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Resumo

A desinformacao online é um dos problemas mais desafiadores da modernidade, que apre-
senta consequéncias severas, incluindo polarizacao politica, ataques a democracia e riscos
a saude publica. A desinformagao se manifesta em qualquer plataforma com uma grande
base de usuarios, incluindo redes sociais e aplicativos de mensagens. Ela permeia todas
as formas de midia e conteido, incluindo imagens, texto, audio e video. Em especial,
a desinformacgao em video representa um desafio multifacetado para os verificadores de
fatos, dado a facilidade com que quaisquer individuos podem gravar e distribuir videos em
varias plataformas de compartilhamento de videos. Trabalhos anteriores investigaram a
detecgao de desinformagao baseada em video, focando em se um video compartilha desin-
formacao ou nao a nivel de video. Embora essa abordagem seja 1til, ela fornece apenas
uma visao limitada e nao facilmente interpretavel do problema, dado que nao fornece um
contexto adicional de quando a desinformacao ocorre dentro dos videos e qual conteido
é responsavel por tornar o video desinformativo.

Neste trabalho, tentamos preencher essa lacuna de pesquisa propondo uma nova
abordagem para a deteccao de desinformacao em videos, focando na identificagao da secao
dos videos que contém desinformagao, uma tarefa que enquadramos como misinformation
span detection. Apresentamos dois novos conjuntos de dados para esta tarefa, ambos
contendo alegacoes falsas e o momento do video em que elas aparecem. Transcrevemos o
audio de cada video para texto, identificando o segmento do video em que a desinformagao
aparece, resultando em dois conjuntos de dados com mais de 600 videos com mais de 2.400
segmentos contendo alegagoes verificadas e anotadas. Em seguida, empregamos classifi-
cadores construidos com modelos de linguagem de ultima geragao, e nossos resultados
mostram que podemos identificar em qual parte de um video ha desinformacao com uma
pontuacao F1 de 0,68. Além disso, também apontamos novas direcoes para a tarefa de
misinformation span detection usando in-context learning. Esperamos que nosso trabalho
possa auxiliar os verificadores de fatos, além do desenvolvimento de ferramentas automa-
tizadas de deteccao de desinformacao e moderacao automatica que estejam alinhadas com

as necessidades em evolucao das plataformas digitais.

Palavras-chave: misinformation; natural language processing.



Abstract

Online misinformation is one of the most challenging modern issues, yielding severe con-
sequences, including political polarization, attacks on democracy, and public health risks.
Misinformation manifests in any platform with a large user base, including online so-
cial networks and messaging apps. It permeates all media and content forms, including
images, text, audio, and video. Distinctly, video-based misinformation represents a mul-
tifaceted challenge for fact-checkers, given the ease with which individuals can record and
upload videos on various video-sharing platforms. Previous research efforts investigated
detecting video-based misinformation, focusing on whether a video shares misinformation
or not on a video level. While this approach is useful, it only provides a limited and
non-easily interpretable view of the problem given that it does not provide an additional
context of when misinformation occurs within videos and what content (i.e., claims) are
responsible for the video’s misinformative nature.

In this work, we attempt to bridge this research gap by proposing a novel approach
for misinformation detection on videos, focusing on identifying the span of videos that are
responsible for the video’s misinformation claim, a task we frame as misinformation span
detection. We present two new datasets for this task, both containing false claims and the
video moment in which they appear. We transcribe each video’s audio to text, identifying
the video segment in which the misinformation claims appear, resulting in two datasets of
more than 600 videos with more than 2,300 segments containing annotated fact-checked
claims. Then, we employ classifiers built with state-of-the-art language models, and our
results show that we can identify in which part of a video there is misinformation with an
F1 score of 0.68. Additionally, we also point to new directions for misinformation span
detection using in-context learning. We hope our work can assist fact-checkers and the
development of automated misinformation detection and robust automatic moderation

tools that align with the evolving needs of digital platforms.

Keywords: misinformation; natural language processing.
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Chapter 1

Introduction

Social networks and digital platforms are integral to any user’s online experience, consti-
tuting an essential part of modern life. These platforms enable a wide range of interactions
through various applications, becoming essential to people’s daily lives. Despite their nu-
merous benefits, such as bridging distances, fostering more effective communication, and
enabling marketing strategies, they also bring substantial problems and new challenges
to our society, for example, offering a fertile ground for misinformation campaigns.

Misinformation can be defined as pieces of false information that try to appear
legitimate by claiming to be real [97, 12, 106], and is one of the most important issues to
surface in recent years, affecting modern life in various ways, such as working as an engine
for campaigns that promote attacks on democracy [92, 6], political polarization [4] and
radicalization [92, 6], and even health-related issues, as evidenced during the COVID-19
pandemic, with the spread of anti-vaccination misinformation [71, 40]. Misinformation’s
deep impact on modern life is also evidenced by the surge of counter-acting initiatives, such
as the International Fact-Checking Network (IFCN), an institution devoted to combating
misinformation and widely recognized for its importance, resulting in a nomination for
the Nobel Peace Prize in 2021 [110]. Although initiatives to combat misinformation exist,
it is still an open, multi-faceted problem.

One of the main challenges in combating misinformation lies in the complexity
of digital platform environments and the various forms in which it can arise. For ex-
ample, misinformation can be launched through websites that appear reliable sources of
information but are, in reality, dedicated to disseminating misinformation, often with
political motivations [8]. Moreover, misinformation can manifest in different formats,
including news pieces, memes, images, and content shared across social networks, special-
ized groups, and messaging platforms like WhatsApp and Telegram. It spreads through
various mediums, encompassing audio [61, 33, 62|, video [48, 107, 24, 79, 87, 77, 47, 91],
images [38, 78, 94, 46, 58, 93] , and text-based content [42, 41, 109, 73, 60, 75, 25, 59].

The ubiquity of misinformation online motivates our work, which focuses on ana-
lyzing and detecting misinformation through state-of-the-art natural language processing
techniques. To this end, as further discussed in Section 1.1, we turn to improving mis-

information detection, focusing on video-based misinformation, where we leverage the



1.1. Misinformation in Videos 15

transcription of the video’s audio to locate where misinformation appears. In addition to
proposing a novel misinformation detection framework, we also want to provide a proof-

of-concept analysis of how state-of-the-art classifiers perform over noisy text.

1.1 Misinformation in Videos

As mentioned in Section 1, misinformation is one of the most challenging prob-
lems in our society in the recent years and can take many forms, which offers a great
challenge when proposing solutions. Misinformation in video content represents a partic-
ularly complex problem due to the massive amount of videos uploaded daily in platforms
like YouTube and TikTok. In a single day, YouTube receives a volume of user-generated
videos equivalent to 720,000 hours. *

Fact-checking agencies cannot keep up with the rapid spread of online misinforma-
tion without tools that facilitate journalists to identify content that is worth fact-checking.
Additionally, content moderation in videos is a growing concern for platforms such as
YouTube and TikTok, especially with novel regulations, such as the that forces the plat-
forms such as the Digital Services Act (DSA) [16], that force those platforms to remove
content that is against their terms and also provide transparency about the moderation
process.

Thus, this scenario calls for automated detection methods of misinformation in
videos. However, unlike detecting if a textual claim or image is fake, detecting misin-
formation in videos is particularly challenging as one single video can contain hours of
speech and become a very laborious task. Despite their undoubted importance, previous
research focused on detecting whether a video shares misinformation or not on a video
level [107, 48, 44]. While this approach is useful, it only provides a limited and non-easily
interpretable view of the problem given that it does not provide an additional context of
when misinformation occurs within videos and what content (i.e., claims) are responsible
for the video’s misinformation nature.

In this work, we address the problem of misinformation span detection in videos,
which involves determining the specific segments of a video where misinformation is
present. For example, Figure 1.1 depicts a real 55-minute-long video, which was fact-
checked by specialists who pointed out 16 misinformative claims (for an illustrative pur-
pose, we marked with red dots the segments in which the false claims are made). Our

effort in this work evaluates the feasibility of automatically spotting the segments of the

https://www.globalmediainsight.com/blog/youtube-users-statistics/#stat
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Figure 1.1: Example of a fact-checked video with pointers to misinformative segments

videos where these false claims appear. To do it, we used a methodology based on a
three-step approach.

First, we gathered two datasets of videos verified by the fact-checking agency Aos
Fatos?, which is part of the International Fact-Checking Network (IFCN) and one of
the most prestigious fact-checking agencies in Brazil. Both datasets contain videos and
a set of false claims made in the video. The first dataset contains 538 videos featuring
Brazil’s former president, Jair Bolsonaro, throughout his 4-year term. The second dataset
comprises 78 videos containing electoral fraud claims made by voters during the 2022
Brazilian presidential election. Our second step consists of extracting textual transcripts
from these videos and annotating the time in which each false claim appears in the video
in order to identify which segments of each video contain misinformation. Finally, in
our last step, we explored different evaluation scenarios, testing multiple classification
approaches using state-of-the-art language models in order to investigate the feasibility
of differentiating the segments containing misinformation from those that do not contain
them.

Our evaluation results indicate the feasibility of automated misinformation span
detection in videos, pointing to valuable directions for developing tools that can assist
fact-checkers and moderation in social media platforms.

To the best of our knowledge, we are the first to approach misinformation span
detection in videos. We hope our methodology and results offer guidance for future
research on the theme and a baseline for comparison. Our results show the feasibility of
using automatic detection for this task but also leave space for improvements. We hope
our work can inspire future tools to mitigate the misinformation problem in practice. We

also propose two publicly available datasets containing 538 and 77 videos, annotated with

https://www.aosfatos.org/
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timing in the videos in which 2,355 false claims and 78 false claims occur, respectively.
To the best of our knowledge, these are the first datasets of their kind, and we believe

they are valuable resources for the research community.

1.2 Dissertation Statement

This thesis states that online misinformation can be further understood and de-
tected by leveraging state-of-the-art natural language processing methods. Online plat-
forms struggle with the diverse and evolving landscape of misinformation, encompassing
not only textual content but also other media forms like images, audio, and video. This
prompts us to improve automatic misinformation detection, specifically concerning video
content, by employing classifiers based on large-language models on the transcriptions of

said videos.

1.3 Dissertation Contributions

Our contributions are the following:

e We further develop the task of misinformation detection on videos by formalizing

the task of misinformation span detection.

e We propose two novel false information datasets with timestamp labels for misin-

formation span detection in videos.

e We define the first baselines for the task, analyzing the problem in multiple settings

and providing a thorough analysis.

e We point to possible factors affecting performance, such as the noise level in the

videos analyzed, which can guide further efforts in the task.
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1.4 Dissertation Outline

Here we present a brief summary of the contents detailed in each chapter of this

dissertation:

e Chapter 2 presents previous works on misinformation and text-based classifiers

related to our domain.
e Chapter 3 presents our results for misinformation span detection on videos

e Chapter 4 concludes our work, highlighting main findings and future work possi-
bilities.
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Chapter 2

Related Work

This chapter discusses previous works on online misinformation. Section 2.1 provides
insight into how misinformation is a central and interconnected problem online. Then,
Sections 2.2, 2.3, and 2.4 cover studies on the multiple media forms misinformation can
encompass on social media, previous studies on language models for misinformation de-

tection, and in-context learning, all of which are vital for Chapter 3.

2.1 Online Misinformation

Misinformation permeates online environments and is often associated with other
societal phenomena, such as abusive language. This section discusses the relationship
between misinformation and abusive language, one of the main current issues online.
Several works have explored the online abusive language phenomenon before, which has
been studied under several names such as hate speech [30], online harassment [39], cy-
berbullying [22], toxicity [29, 5], microaggressions [9, 3], stereotyping [66, 35], unhealthy
conversations [2] and others, and we now go over previous works that explore this phe-
nomenon in its many forms. For instance, Mathew et al. [63] have shown that hateful
content spreads faster and can reach a broader audience on social networks, in conso-
nance to what Pennycook et al. [74] and Sylvia Chou et al. [96] concluded. Moreover,
Zannettou et al. [108] explored news content and found that political and divisive events
are more related to hateful commenting, which shows that the use of abusive language
online is directly related to political polarization. Kwok and Wang [53] evidenced the dif-
ficulty in analyzing and detecting racism online, specifically on Twitter. Hewitt et al. [43],
Rodriguez-Sanchez et al. [86], and Fuchs and Schéfer [36] study misogynistic discourse on
Twitter and highlight the challenges of working with such data, with Fuchs and Schéafer
[36] focusing on instances of misogynistic language against female politicians, showing
an increase of hateful expressions against this demographic on Twitter. Additionally,

Rodriguez-Sénchez et al. [86] analyze how sexism is expressed in online conversations in
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Spanish on Twitter. Clarke and Grieve [20] analyze racist and sexist tweets under linguis-
tic variations users expressed, exposing distinct dynamics between the two. Other works
have also emphasized the use of abusive language against religious groups: Chandra et al.
[17] present a study on the problem of detection and categorization of antisemitism in
online platforms. In contrast, Saha et al. [88] show evidence of discrimination against
Muslims in India while also evidencing how users that employ abusive language, namely
fear speech, gather a larger following and are more central in online environments, fur-
ther evidencing the relevance of studying abusive language in online platforms and how
individuals can weaponize this form or discourse to gain relevance.

Beyond the analysis of abusive language, mitigation efforts have been proposed over
the years, as Fortuna and Nunes [34] evidenced in their comprehensive survey: Caselli
et al. [15] propose a new annotation scheme that aims to assess abusive language regarding
intention, effect, and the degree of explicitness of the message. Furthermore, Karan and
Snajder [49] assessed abusive language classifiers on diverse datasets from various sources
and language types, revealing poor generalization of these models to different domains,
highlighting the need for further studies in the field.

Alternatively, other works also explored online misinformation. Vosoughi et al.
[104] analyzed the diffusion of true and false news on Twitter from 2006 to 2017, finding
that false information spreads further, faster, and more broadly than true news in various
categories, with human users playing a more significant role in spreading false information
compared to robots. Blankenship [7] also explored the landscape of misinformation on
Twitter, examining 14,545,945 tweets produced in response to the Las Vegas shooting?
and its second anniversary, aiming to determine the extent of public responses affected
by information pollution, and to pinpoint the nature and dissemination of misinformation
on Twitter and in news coverage. Nan et al. [67] report on the rapid growth of health
misinformation research, highlighting its sources, prevalence, characteristics, and impact,
ultimately suggesting that while it originates from various sources, especially mass and
social media, efforts to mitigate its effects are showing promise in correcting mispercep-
tions. Furthermore, other works [74, 96] agreed that false information spreads faster than
genuine content.

Other works on misinformation focus on proposing mitigation solutions, such as
Vicario et al. [103], who introduce a framework that uses users’ behavior on social me-
dia to predict potential targets for misinformation and fake news, effectively identifying
fake news. Paschalides et al. [69] introduce Check-It, a web browser plugin designed to
efficiently detect fake news by combining various signals. Saxena et al. [90] address the
challenge of changing user opinions by identifying a strategic set of users to counteract
misinformation, considering users’ biases and social interactions, with successful results

demonstrated on Facebook and Twitter datasets. Furthermore, Karduni et al. [50] pro-

https://en.wikipedia.org/wiki/2017_Las_Vegas_shooting
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poses Verifi2, an educational tool for combating misinformation, as indicated by interviews
conducted with experts from various fields.

The works we discussed so far have evidenced how abusive language and misin-
formation are key online issues, and other recent works have discussed how these issues
are connected. Regarding these problems’ interplay, several social studies have theorized
about their relationship [23, 70, 21]. Accordingly, Giachanou and Rosso [37] endorsed
the importance of more quantitative studies on both problems. The authors presented
the evaluation process, datasets, and shared tasks related to online misinformation and
hateful content. Also, they mention the importance of textual features in detecting such
content, which enforces the importance of studying textual patterns. Another remarkable
work that explored online abusive language and misinformation dynamics is from Cinelli
et al. [19]. In their work, the authors described how users spread offensive content on
the YouTube platform and explored its relationship with misinformation-spreading com-
munities. However, the authors focus on online comments written in Italian by YouTube
users, which is a narrow sample of such content online. Finally, Matos et al. [64] analyzed
the interplay between abusive language and misinformation in news articles’ production
patterns, focusing on the textual news content; they performed a textual analysis of on-
line news and concluded that false news presents a higher prevalence of abusive language
when compared to real news. The found patterns are consistent across datasets, even
when they belong to different topics, highlighting the relationship between these issues.

The works on misinformation and abusive language and, ultimately, their relation-
ship show how central misinformation is in the study of online harm, as it is intertwined
with other relevant phenomena. We argue that this motivates further efforts in misinfor-

mation detection and also grounds the work presented in this thesis.

2.2 Media-specific Misinformation

Social media platforms enabled much faster communication between users and
increased the speed of information spread in general. However, this phenomenon also
facilitated the spread of online misinformation, prompting platforms and researchers to
present solutions to this problem.

Misinformation can take many forms, and media-specific efforts to detect them
have been proposed, such as those targeting text posts on social media (e.g., tweets)
[42, 41, 109, 73, 60, 75, 25, 59], images [38, 78, 94, 46, 58, 93, 51], and videos [48, 107, 79,
87, 77, 47, 91, 44].

Among all forms of misinformation, video is one of the most challenging due to the
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intrinsic difficulty of working with such data type, which usually requires more processing
power than, for instance, text, and previous works have proposed mitigation solutions
for the issue. Yi Liaw et al. [107] propose a dataset of conspiracy videos on YouTube
and a pipeline to detect such videos. However, they perform classification at a video
level, not pointing to where the conspiracy claims are made. Hou et al. [44] propose a
similar approach for medical videos, also providing a dataset of annotated YouTube videos
containing misinformation on prostate cancer, but using an SVM-based classifier for their
experiments.

Other works on misinformative videos focus on the platforms where they were
uploaded, such as the work proposed by Hussein et al. [47], which highlights the issue of
misinformation on videos by auditing YouTube and evidencing how their recommendation
systems can induce users to misinformative filter bubbles and grounding the need for more
automated tools for misinformation detection on videos.

Additional works focus on manipulated videos: Sabir et al. [87] focuses on deceptive
face manipulation on videos, also referred to as deepfakes, a form of misinformation built
through synthetically generated media. Similarly, Pu et al. [77] centers on investigating if
deepfake detection methods proposed in the literature generalize to real-world deepfakes.

Other studies focus on short videos specifically: Shang et al. [91] investigate misin-
formative videos about COVID-19 on TikTok, one of the largest video-sharing platforms,
by leveraging captions and video components to propose a classification approach. Qi
et al. [79] also focuses on short video fake news and builds a dataset by crawling Chinese
fact-checking portals, providing a baseline for binary multimodal detection of fake news
videos’ detection.

Another important work on misinformative videos was presented by
Jagtap et al. [48] where the authors propose a framework to classify videos into misinfor-
mation and non-misinformation, analyzing 2125 videos containing information about the
vaccines controversy, the 9/11 conspiracy, chem-trails, the moon landing, and flat earth.
However, like [107, 44, 91, 47, 79], they also focus on binary classification on a video level,
lacking an approach that can infer in which part of the video the misinformation appears.

Considering previous works, we propose a new approach to misinformation detec-
tion on videos, further discussed in Chapter 3. Specifically, we set ourselves apart from
previous works limited to the binary classification of videos containing misinformation.
Our work also differs from previous ones that are limited to short videos. In summary,
we propose a general approach to misinformation detection that can be used for videos
of varying lengths while identifying which section of the video presents misinformative

content, a task we frame as misinformation span detection.
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2.3 Language Models for Misinformation Detection

Natural language processing has advanced significantly in light of Transformers-
based pre-trained models. Those models, such as BERT [28] and GPT [10], allowed the
processing of large corpora in an unsupervised fashion to yield contextual and meaning-
rich embeddings. This capacity is due to their quadratic attention mechanism [102],
which allows for representing a token given all the other tokens in a sentence, lead-
ing to better contextualization and text understanding. This mechanism allowed the
Transformer architecture to overcome the limitations of older NLP architectures such as
LSTMs and CNNs [102]. Therefore, given their contextual text understanding capabil-
ities, Transformers-based language models’ performance is currently state-of-the-art for
various tasks [28, 10].

Transformers-based models have also aided automatic misinformation detection.
Pelrine et al. [73] have shown that simple Transformers-based baselines, such as BERT
and RoBERTa reached state-of-the-art performance for misinformation detection on social
media posts, for instance, Twitter. Raza and Ding [81] also employed Transformers-based
models for misinformation detection by proposing an encode-decoder model, similar to
the BART architecture [55], combined with social media features to detect fake news.
Praseed et al. [76] also proposed a Transformers-based model for a similar task: their
Transformers-based model ensemble improved the effectiveness of Hindi misinformation
detection. Moreover, Truica and Apostol [101] provided comprehensive empirical work
showing the performance of various Transformers models for fake news detection: in
their work, authors show how their proposed model MisRoBARTa compares to other
Transformers baselines and their performance in different datasets and parameter settings.
Overall, recent work endorses the state-of-the-art performance of Transformers models in
misinformation detection tasks, motivating us to employ Transformers-based models for
misinformation span detection in Chapter 3.

Other architectures have been proposed in recent years, such as LLaMa [99], which
is based on the decoder part of the Transformer, adapting its architecture in several
components. Additionally, the LLaMa models available to the public are much larger,
parameter-wise, than the BERT models. For comparison, the largest BERT has 340 [28]
Million parameters, while the largest LLaMa has 65 Billion parameters [99]. The large
number of parameters, along with the updates in architecture and extensive amount of
training data, led LLaMa’s performance to reach the state-of-the-art in various tasks [100].
Similar performance is also seen in related language models, such as GPT [10] and PaL.M
[18]. Yet, the large amount of parameters demands a higher training cost, which can

sometimes be prohibitive.
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2.4 In-context Learning

Large language models (LLMs) have surfaced recently, enabling unprecedented
performance in multiple natural language processing tasks. Traditionally, to adapt an
NLP model for a new problem or dataset, one would need to do multiple rounds of fine-
tuning, which is still the case for language models such as BERT or T5. However, LLMs
have fostered a new paradigm in Natural Language Processing: In-Context Learning
(ICL), which consists of learning through a few examples in the prompt.

Dong et al. [31] state that the "key idea of in-context learning is to learn from
analogy.” ICL requires demonstrations, which serve as examples in the prompt, and a
query question. The demonstrations and the query are concatenated and fed as input to
the model for prediction. However, in an ICL setup, no model parameters are updated.
Unlike in a traditional supervised learning setting, the demonstrations are expected to be
enough for the model to learn the pattern and make the correct prediction.

Since its proposal, ICL has been used in multiple contexts. For instance, Sahu et al.
[89] evaluate one sentiment classification (GoEmotions [26]) and three intent classification
datasets (BANKINGT77 [14], HWUG64 [56], and CLINC150 [54]), achieving state-of-the-art
performance in all tasks using open source LLLMs. They also highlight how larger models
are needed to take advantage of more demonstrations in the prompt, as smaller models
see a plateau or decrease performance as more demonstrations are used.

Min et al. [65] present one of the most comprehensive studies of ICL in different
NLP settings, exploring 142 NLP datasets, including question answering, classification,
and paraphrase detection, among others. The authors propose a meta-learning approach
in which a pre-trained language model is tuned to do ICL on multiple training tasks;
this enables a model to effectively learn a new task during inference without needing
parameter updates. This new approach outperforms baselines, including ICL (with no
meta-training), and, more surprisingly, yields on-par performance with models 8x bigger
and fine-tuned on a specific target task, which showcases the effectiveness of ICL.

Although ICL is widely used in the literature, few works tackle its use in misinfor-
mation detection. Related to the domain of this work, Liu et al. [57] explore cross-domain
misinformation detection using in-context learning. The authors propose RAEmoLLM,
a framework that leverages ICL based on affective information to detect misinformation,
which removes the cost of fine-tuning LLMs. Authors also perform experiments with zero-
shot and few-shot methods that do not incorporate affective information, showing that
doing so is an effective addition to the detection process. Although this work sheds light
on how to incorporate ICL in misinformation detection, it does not tackle misinformation
in videos, and it especially does not tackle tasks similar to misinformation span detection,

a gap we bridge in this work.
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Chapter 3

Misinformation span detection

3.1 Problem description

As presented in Section 1.1, we now turn to propose mitigation efforts in this Chap-
ter, specifically, misinformation detection on videos, proposing the task of misinformation
span detection. The objective of this task is the detection of the spans that make a piece
of content misinformative. ! ? Specifically, we aim to detect whether a piece of content
is misinformative and, in particular, which spans of the content are responsible for the
content’s misinformative nature. Identifying these spans of false claims is paramount as
it can assist fact-checkers and social media operators in providing the necessary context
(e.g., warning labels) at the exact time of appearance of the false claims.

Although finding mis/disinformation in videos is greatly important, previous work
lacks sufficient data for misinformation span detection. In this light, we build two novel
datasets for the task: 1) BOL4Y and 2) EI22, further discussed in Sections 3.2 and 3.3.

3.2 BOL4Y dataset

To build our first dataset, henceforth referred to as BOL4Y, we leverage a list of
false claims made by Jair Bolsonaro, Brazil’s former president. AosFatos,® one of Brazil’s
biggest fact-checking agencies, compiled a list of 6,685 claims through Bolsonaro’s 4-

4

Year presidential term.” These claims come from multiple sources, such as interviews,

written social media posts, and videos that Bolsonaro shared. Each fact check contains

LOur task is analogous to the Toxic Spans Detection task presented by Pavlopoulos et al. [72].

2As discussed in the next sections, our approach focuses on the transcriptions of the videos. That is,
no visual elements are used for detection.

3https://aosfatos.org/

“https://www.aosfatos.org/todas-as-declara’C3%A7%C3%B5es-de-bolsonaro/
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the following data:
e Claim: A sentence that summarizes the false claim.
e Fact-check: Fact-check produced by AosFatos’ journalists.

e Broad theme: The theme and broad topic of the claim (e.g., infrastructure,
COVID-19 pandemic).

e Repetition count: The number of times Bolsonaro made that claim on other

occasions, including the dates for each occurrence.

e Source: The link to the source (e.g., social media post) that includes the false
claim. Although most claims have repetitions throughout Bolsonaro’s presidency,
AosFatos only lists the source for one of those occurrences. Also, it includes the

category of the source (e.g., interview, live stream, etc.).

e Media repercussion: Links to other media websites that published a news piece

about the claim.

We created our dataset by scraping AosFatos’ website in March 2023, collecting
data for 6,685 claims from 1,595 unique sources, which vary and include, for example, news
pieces from major outlets, posts on social media, and official declarations on governmental
websites. Then, we specifically focused on claims with video-based sources, primarily from
social media platforms like YouTube, Facebook, TikTok, and occasionally from news
websites. Then, we visited the sources and downloaded the videos, obtaining a set of
525 videos. Also, we note that for 121 claims, AosFatos did not provide a link to the
source. However, they provide the transcript of the video that comes from AosFatos’
transcription service, Escriba. ® We complement this dataset with these readily available
textual transcripts. Overall, this dataset includes 525 videos sharing false claims and 121
textual transcripts (corresponding to videos sharing false claims) obtained from AosFatos’
transcription service. The next subsection details how we built the BOL4Y dataset using
the data mentioned. We also include a more in-depth analysis of these videos” metadata,

including comments, in Appendix A.

3.2.1 Building BOL4Y

Our methodology for building BOL4Y consists of the following steps: 1) Tran-

script extraction and segmentation: We normalize our dataset so that we convert

Shttps://escriba.aosfatos.org/en/
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Figure 3.1: Overview of our methodology regarding the BOL4Y dataset

each video to a textual transcript, which we segment into pieces; 2) Segment embed-
dings generation: We convert the segmented textual data from the transcript into
dense embeddings using a BERT-based model; 3) Perform segment matching: We
semantically match the segments with the annotated false claims from AosFatos using
the segment embeddings; and 4) Classification: We perform a segment-level classifica-
tion to identify segments sharing false information, essentially solving the misinformation
spans detection task. We present an overview of our methodology in Figure 3.1. Below,

we elaborate on these steps and our experimental setup.

3.2.1.1 Transcript Extraction & Segmentation

Our approach to misinformation span detection in videos leverages the transcrip-
tions of videos’ audios. To extract transcriptions from videos, we use OpenAI’s Whis-
per [80], a state-of-the-art speech recognition model, on the audio of each video in our
dataset. Whisper takes as input an audio file and generates a textual transcription. Al-
though Whisper cannot provide word-level timestamps [68], it can segment audio into
transcribed segments (i.e., parts of the transcription) of at most 30-second windows. We
applied Whisper to the 525 video files in our dataset and extracted their textual tran-
scripts. Note that the transcripts provided by Escriba are already segmented by AosFatos’

Escriba service.
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3.2.1.2 Generating Segment Embeddings

Having converted our dataset into textual information (i.e., textual transcripts)
divided into segments, our next step is to align the transcribed segments with man-
ally annotated fact-checks provided by aosfatos. To this end, we use a state-of-the-art
transformer-based model trained and tailored for Brazilian Portuguese. Specifically, we
use BERTimbau [95], a BERT-based model [27] that is pre-trained on the Brazilian Web
as Corpus (BrWac) [105], a large Brazilian Portuguese corpus. The model was downloaded
from the HuggingFace repository, % and we use the base model that yields embeddings
of 768 dimensions. Moreover, we use the SentenceTransformers [82] implementation to
retrieve the embeddings from the mean pooling of the language model. In a nutshell,
BERTimbau takes as input the textual information included in a transcript segment and
generates a dense vector representation (embedding); these embeddings are the foundation
for matching segments that share misinformation as they allow us to assess the similarity

of transcript segments and fact-checked claims.

3.2.1.3 Performing Segment Matching

Here, we aim to identify the transcript segments that contain misinformation
claims, as fact-checked by professional journalists. To leverage these fact-checks as posi-
tive (i.e., misinformation) labels in our dataset, we compare all transcript segments from
a given video to the actual fact-check available for that video. This is an integral part
of our methodology as it allows us to create an annotated dataset of segments that share
misinformation and segments that do not. To achieve this, we perform the following
procedure: We use BERTimbau to extract embeddings for each segment of each video
transcript in our dataset (see Section 3.2.1.2). We also compute embeddings for each false
claim (see Claim field in Section 3.2). Recall that each false claim is associated with one
video in the dataset. Then, we compare the claim’s embedding to all video segments’
embeddings using cosine similarity. For each false claim, we consider the segment with
the highest cosine similarity as the top candidate to be examined. This part allows for
the identification of segments that potentially share misinformation, as they share textual
similarities with the known false claims. Given that a false claim may span into multiple
transcription segments, we also extract the segments before and after the segment with

the highest cosine similarity for further examination.

Shttps://huggingface.co/neuralmind /bert-base-portuguese-cased
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After identifying segments that potentially share false claims, we perform a manual
annotation process to verify that they are indeed sharing false claims. We use the open-
source text annotation tool Doccano’™® to speed up the annotation procedure. For the
annotation procedure, we focus on pairs of top candidate segments and false claims with
a cosine similarity of 0.7 or higher. We selected this threshold after manual examinations
that showed that pairs with a cosine similarity of 0.7 or below were not semantically sim-
ilar. After applying this threshold and selecting all pairs of top candidate segments/false
claims with cosine similarity higher than 0.7, we end up with 2,996 pairs that we anno-
tate. For each claim, we prompt the annotator to flag which of the three selected segments
comprise the claim. We choose a comprehensive approach and flag every segment that
has at least one word that is part of the claim. We also add flags to i) signal if more
segments are needed to capture the whole claim, ii) signal if there is a mistranscription
(i.e., some words of one or more segments seem to be mistranscribed); iii) None of the
segments shown match the fact-checked claim.

We perform additional rounds of segment matching with the instances flagged as
missing a part of the claim, adding more segments before and after the already flagged
segments. Two annotators matched 2,373 claims from the initial 6,685 claims listed by
AosFatos, with the two annotators disagreeing only on 18 cases, which were discussed
and removed from the dataset, resulting in 2,355 total segments with a 99.24% agreement
rate between annotators. Afterward, for each matched claim, we concatenate the segments
composing that claim into one and consider that concatenation as a positive example in
further steps. The reason for merging these segments is to ensure that the full context
of the claim is considered. In cases where a claim is spread across multiple segments,
each segment on its own might not contain enough information to determine if it is
misinformative. Note that these claims come from a subset of the initial set of downloaded
videos: 430 videos out of the initial 525 and 108 out of the initial 121 transcriptions from
Escriba, totaling 538 unique sources.

Finally, since our goal is to model our problem as a segment classification task,
we need segments that do not share false claims (i.e., negative examples). To do this, we
treat all segments that are not matched or annotated as negative examples (i.e., segments
that do not share false claims). Using this approach, we end up with 336,855 segments

that we treat as negative examples.

"https://github.com/doccano/doccano
8 An example of Doccano’s interface is available in Appendix B
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3.3 EI22 dataset

We also release a second expert-annotated dataset gathered by AosFatos. AosFatos
fact-checked a set of videos posted on YouTube and privately shared them with us. The
dataset comprises 78 fact-checked videos of electoral fraud claims made by voters during
the 2022 Brazilian presidential election. We refer to this dataset as Election Integrity
22, shortened to EI22. In total, EI22 has 77 videos and 1997 segments, of which 78
are misinformative claims. The 77 videos are of varying lengths, come from voters’ own

recordings, and are entirely separate from the videos on the BOL4Y dataset.

3.3.1 Building EI22

AosFatos provided us with a list of videos that comprise EI22, which contained
the links to the videos and timestamps of the misinformative claims. We again employed
Whisper, which transcribed the audio into segments. We then selected the segments that

comprised the timestamps of the claims, relying on the expertly annotated timestamps.

3.4 Classification

To investigate the feasibility of automatically detecting false segments in video
transcripts, we employ two models pre-trained with Brazilian Portuguese as bases for
our classifiers: BERTimbau and PTT5. We use BERTimbau, which we already use for
extracting segment embeddings, and PTT5 [13], which was also pre-trained on the BrWac
collection and is based on the T5 architecture [85]. For each of these models, we use a
classification head with a softmax activation that provides us with a probability of the
segment sharing false claims or not for each segment. Note that for the classification,
we elected to use PTTH in addition to BERTimbau to compare how the selection of the
underlying Transformer architecture (i.e., encoder-only vs. encoder-decoder) affects the

classification performance.
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3.5 Experimental Setup

Here, we provide more details on our experimental setup, including information
about the dataset preparation, training and evaluation, and temporal and cross-dataset

experiments.

3.5.1 Dataset Preparation.

Our BOL4Y dataset is highly imbalanced: 2,355 positive instances (i.e., segments
sharing false claims) and 336,885 negative instances (i.e., segments that do not share false
claims). This substantial class imbalance impacts classification performance. Hence, we
evaluate classification performance using various configurations by randomly undersam-
pling? the negative examples in the training dataset. In particular, we use the following
ratios: 1-to-1 (i.e., balanced training set across classes), 1-to-10, 1-to-25, 1-to-50, 1-to-75,
1-t0-100, and the full dataset (2.3K positive and 336K negative examples). It is relevant
to mention that undersampling is applied only to the training set, with both validation

and test sets being kept intact.

3.5.2 Dataset Variations.

AosFatos published the list of claims on their website. However, they may present
editing by their journalists to correct grammatical errors or, in some cases, to add some
context within brackets. There are also additional challenges in working with transcrip-
tions, such as noisy audio, poor transcription, and imperfect speech. Considering the
issues mentioned, the edited version of the claim might differ from what we find in the
transcripts.

Therefore, we have created an alternative version of the dataset in which we have

replaced the false claims found in the transcripts with the version released by the jour-

9n addition to random undersampling, other techniques are available to undersample a dataset. We
choose the random alternative due to being a simpler and easily reproducible alternative. Other options
are available in the imbalanced-learn package: https://imbalanced-learn.org/stable/under_samp
ling.html
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nalist. Hence, we will refer to the variation of the dataset with the claims written by the
journalist as the “Edited” version and the version with claims extracted from transcrip-
tions as the “Original” version. For reference, we provide an example of what a claim
looks like in the original and edited datasets in Table 3.1: note that the version from the
edited dataset has context added in brackets. Given the polished nature of the edited
dataset, we aim to provide insights into the challenges of working with transcriptions
for misinformation span detection and how ill-formated claims might be detrimental to
performance. We aim to assess how the quality of the transcripts affects the classification

performance when considering the misinformation span detection task.

Table 3.1: Example of claim in the original and edited datasets

Dataset

. . Bolsonaro’s Claim
Variation

Original  “He built three hydroelectric power plants abroad”
Edited “He [Lula, Brazil’s former president]
built three hydroelectric power plants abroad”

3.5.3 Training and Evaluation.

We use the HuggingFace implementations of the BERTimbau'® and PTT5' mod-
els, which we fine-tune for our dataset variations using a Nvidia T4 GPU. The Hugging-
Face implementations contain a classification head that produces the output prediction
from the generated embeddings of the model. We perform classification with 5-fold cross-
validation. For each fold, we divide the dataset into five equal portions; three are used
for training, one for validation, and one for testing. The validation set is used in an
early-stopping approach, as we use the model from the epoch that best performed in the
validation set. We train the models for three epochs and use default parameters from their
implementation. Then, we assess the performance of classifiers and the impact of training
set sizes on evaluation results. The undersampled variations also give us an insight into
how classifiers can be implemented and used in the wild, as a bigger dataset also impli-
cates using more resources to train models. We follow the above procedure considering

different undersampling ratios over the original and edited datasets.

Onttps://huggingface.co/neuralmind/bert-base-portuguese-cased
Uhttps://huggingface.co/unicamp-dl/ptt5-base-portuguese-vocab
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3.5.3.1 Metrics

We evaluate our experiments using Precision and Recall for class 1 (misinforma-
tion), Balanced Accuracy, and Macro-fl. We argue that these metrics comprehensively
overview our models’ performance across settings. Overall, we consider Macro-F1 our
main metric due to class imbalance.

We also argue that false negatives are more relevant than false positives in our
setup. The main goal of our methodology is to aid fact-checkers. Considering this, false
positives, that is, legitimate claims predicted as false, will be double-checked by journalists
with no added harm. However, false negatives will go unnoticed, as they will not be flagged

as false correctly, resulting in a potentially more problematic and harmful outcome.

3.5.4 Sliding Window Experiments.

We also conduct experiments in a temporal manner to evaluate the real-world fea-
sibility of detecting misinformation in future data. Specifically, we investigate whether
models trained on past months’ data can accurately predict subsequent months’ misinfor-
mation. We perform two settings: 1) fixed training and 2) expanding training windows.

In the first setting, the training and test sets span fixed periods (6 months for
training and one month for testing). We progressively move the testing window forward
by one month. In the second experiment, the test window remains fixed for one month, but
the training window expands with each iteration. During training, we use the most recent
month as validation data for both settings. We train each variation for three epochs
and select the model with the best performance on the validation set. The temporal
experiments aim to investigate: If we train models on data from a given period in months,

can we accurately predict misinformation in future months?

3.5.5 Cross-dataset performance.

We also perform a cross-dataset test, training models with BOL4Y, and testing on
EI22; striving to assess cross-domain performance. Recall that these datasets pertain to

different contexts: BOLA4Y relates to false claims made by Bolsonaro while EI22 relates
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to electoral fraud claims made by voters. We argue that the context difference between
the datasets allows us to perform cross-domain experiments. We train models for three
epochs with BERTimbau and PTT5 using multiple undersampling ratios.

Apart from releasing additional data (i.e., the EI22 dataset) for the task, we aim
to provide insights into data representativeness of data and misinformative claims; we
also want to assess how models trained in one dataset perform when tested in another
dataset of claims made by different speakers, further discussed in Section 3.6.1, effectively

showcasing the feasibility of the task in a real-world scenario.

3.6 Results

We now go over the results of our proposed experiments

3.6.1 Classification Performance

3.6.1.1 Original Dataset

Table 3.2 shows the results for our classifiers regarding all considered variations of
our training dataset. Recall that, due to the considerable amount of data, we leverage
undersampling variations of our dataset as our training set while maintaining the same test
sets for all experiments. We consider six positive-to-negative example ratios (1-to-1, 1-to-
10, 1-to-25, 1-t0-50, 1-to-75, and 1-to-100) along the full dataset when undersampling our
training set. We implement a 5-fold cross-validation approach and report average values
on a video level, i.e., we compute metrics for every video in every fold and report average
value for five folds. We compare results with the Macro F1 score due to class imbalance,
along with class-balanced accuracy, and precision and recall for Class 1 (misinformation).

The BERTimbau classifier trained on the full version of our dataset is outperformed
by all undersampled versions. The same happens for the PTT5 classifier trained on the full
dataset. These results motivate us to exclude the full version of the dataset from further
experiments due to its poor performance and high training time. The BERTimbau-based

classifiers match or outperform the PTT5 ones when comparing the same training sets
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Table 3.2: Classification results for our dataset

BERTimbau BERTimbau BERTimbau BERTimbau BERTimbau BERTimbau BERTimbau

(Full) (1-to-1) (1-to0-10) (1-to-25) (1-to-50) (1-to-75) (1-t0-100)
Balanced Accuracy 0.55 0.82 0.78 0.75 0.68 0.69 0.62
Macro F1 0.56 0.49 0.63 0.67 0.66 0.68 0.63
Precision (Class 1) 0.21 0.09 0.24 0.35 0.38 0.43 0.35
Recall (Class 1) 1.00 0.75 0.94 0.97 0.99 0.99 1.00

PTT5 PTT5 PTT5 PTT5 PTT5 PTT5 PTT5

(Full) (1-to-1) (1-to-10) (1-to-25) (1-t0-50) (1-to-75) (1-to-100)
Balanced Accuracy 0.54 0.81 0.76 0.70 0.64 0.60 0.58
Macro F1 0.54 0.49 0.61 0.64 0.62 0.60 0.58
Precision (Class 1) 0.15 0.08 0.20 0.30 0.29 0.28 0.27
Recall (Class 1) 1.00 0.76 0.94 0.97 0.99 0.99 1.00

regarding Macro F1. The BERTimbau-based classifier trained on the smallest training
set (1-to-1 ratio) yields the best-balanced accuracy value, achieving a 0.82 score, although
with poorer recall, precision, and Macro F1. Regarding Macro F1, BERT (1-to-75) yields
the best performance overall, with a Macro F1 score of 0.68. We see a positive impact
on performance when varying the undersampling ratio, with better results than training
models with the full dataset. This shows that training models in a full dataset setting can
be counterproductive in addition to being more costly. Overall, these results highlight
that misinformation span detection is challenging, with modern classifiers based on state-

of-the-art language models achieving an F'1 score of up to 0.68.

3.6.1.2 Edited Dataset

We also propose an analysis of classification using an alternative version of our
dataset where we consider the claims as edited by the journalist. To provide context, we
initially performed a sentence-matching task to locate fact-checked claims within video
transcriptions. To better understand the challenges of using transcriptions as input for
classification, we have created an alternative version of the dataset. In this version, we
replaced the transcribed claims (which served as positive examples) with the original
claims as presented by AosFatos’ journalists. These original claims are more refined and
polished in comparison.

Comparatively, we see that unpolished claims (i.e., the original dataset) degrade
performance, which might be attributed to the noisy nature of transcriptions as they, for
example, can replicate speech imperfections from the original audio. We see an increase in
performance when using the edited version of the dataset (See Table 3.3) when comparing
models trained in datasets with different undersampling ratios, which showcases the diffi-
culty of working with transcriptions. Particularly for PTT5, the best-performing version
is now the 1-to-75 undersampled version instead of 1-to-25, as shown in Table 3.2. Over-

all, we find that the Edited dataset shows how ill-formatted claims can be detrimental to
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performance.

Table 3.3: Classification results for the Edited version of our dataset.

BERTimbau BERTimbau BERTimbau BERTimbau BERTimbau BERTimbau

(1-to-1) (1-t0-10) (1-t0-25) (1-t0-50) (1-to-75) (1-t0-100)
Balanced Accuracy 0.91 0.92 0.88 0.85 0.85 0.81
Macro F1 0.60 0.73 0.78 0.81 0.81 0.81
Precision (Class 1) 0.21 0.39 0.52 0.62 0.65 0.68
Recall (Class 1) 0.87 0.97 0.98 0.99 0.99 1.00

PTT5 PTT5 PTT5 PTT5 PTT5 PTT5

(1-to-1) (1-to-10) (1-to-25) (1-t0-50) (1-to-75) (1-t0-100)
Balanced Accuracy 0.90 0.90 0.88 0.81 0.80 0.77
Macro F1 0.58 0.71 0.75 0.76 0.79 0.76
Precision (Class 1) 0.19 0.37 0.46 0.54 0.63 0.60
Recall (Class 1) 0.85 0.97 0.98 0.99 1.00 0.99

3.6.2 Temporal Analyses

We also conduct experiments where we partition the dataset by organizing the
claims according to the specific months when Bolsonaro made them. We aim to gain
insights into the practicality of deploying misinformation detection models in real-world
scenarios where future data is inaccessible. This experiment will help us evaluate the
robustness of our models in predicting and detecting future misinformation, focusing on
the task of misinformation span detection.

We base our temporal analysis on the best-performing models in Table 3.2 re-
garding Macro F1 scores, namely BERT-75 and T5-25. Then, we propose two separate
temporal studies for each: 1) a fixed training span of six months, hereafter referenced
as Walk-Forward and 2) an increasing training span, hereafter referenced as Expand,
starting with six months.

Figure 3.2 shows the distribution of Bolsonaro’s false claims over time and impor-
tant milestones of his presidency. Notably, false claims increased during the COVID-19
pandemic, starting to lower after the first quarter of 2022 and swiftly growing nearer to
the presidential elections, when Bolsonaro faced his biggest political opponent, Brazil’s
then-former president, Lula.

We train all models for three epochs and, considering the last month of the training
set as a validation set, choose the best version using early stopping. Note that due to
the lack of claims in June 2019 (see Figure 3.2), we could not use it as a validation or
test set, yielding null scores for June 2019 (test) and July 2019 (validation). In both
settings (" Walk Forward” and ”Expand”), we test models on the month chronologically
after the month of the validation set. We consider the unedited dataset and report Macro

F1 scores monthly in Figure 3.3. Results show values ranging from 0.5 to 0.8, with the
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Figure 3.2: Monthly sum of misinformation claims. Vertical lines signal important events
during Bolsonaro’s administration.

overall highest score on April 2021 (BERTimbau - Expand), the month after the start of
Covid relief payments. For all settings, we observe a decrease in Macro F1 scores during
the second semester of 2022, even for the " Expand” approaches, which are trained on all
previous months. Overall, we also note that PTT5 yields more consistent performance

across settings, generating similar results for ”Walk Forward” and ”Expand” in contrast
to BERTimbau.
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Figure 3.3: Temporal analysis of the performance of our classifiers.

3.6.2.1 Cross-dataset performance

Table 3.4 shows the cross dataset experiment results. We trained models with
BOLA4Y and tested on EI22. We varied the undersampling ratio, achieving the best result
(Macro F1 score of 0.72) with the 1-to-10 ratio for both models. Our results point to
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cross-dataset effectiveness, which is crucial in dealing with misinformation in a realistic

setting.
Table 3.4: Macro F1 scores for cross-dataset performance
1-to-1 1-to-10 1-to-25 1-to-50 1-to-75 1-to-100
BERTimbau 0.64 0.71 0.62 0.62 0.58 0.61
PTT5 0.64 0.71 0.63 0.57 0.59 0.56

3.6.3 Factors Affecting Performance (BOL4Y)

Here, we conduct additional analyses to understand how the classification perfor-
mance is affected by various factors over the BOL4Y dataset, including the source of the
transcription, the quality of the transcription, and the topic of the false claim. We choose
to perform these analyses on the BOL4Y as it is a much larger dataset with claims from

multiple topics, in contrast to EI22.

3.6.3.1 Noise Scores

As mentioned previously, there are multiple sources of confusing factors when
dealing with transcriptions: noisy audio, poor transcription, and imperfect speech. First,
we wanted to quantify the impact of noise on classification performance, so we calculated
the Spectral Flatness score [32] for all of our videos’ audio. Spectral flatness (or tonality
coefficient) measures how much a sound resembles white noise, as opposed to a pure
tone. A high spectral flatness (equal to 1.0) indicates that the sound has a flat spectrum,
similar to white noise. The score distribution is shown in Figure 3.4, highlighting that
most videos have clear audio, except for a few outliers.

Nevertheless, we assess correlation between metrics and spectral flatness. Table
3.5 shows the Pearson correlation between spectral flatness and Macro F1 scores for the
BERT-75 variation. We find no relevant correlation between Macro F1 and Spectral
Flatness values, possibly due to the nature of the videos: many come from interviews and

live streams, mostly recorded in quiet environments.
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Figure 3.4: Spectral Flatness Scores.

Table 3.5: Correlation between performance and noise.

Spectral Flatness Correlation

Balanced Accuracy -0.045
Macro F1 -0.046
Precision (Class 1) -0.054
Recall (Class 1) -0.01

3.6.3.2 Transcription Source

Recall that the transcriptions in our dataset come from 1) videos we downloaded
and transcribed using Whisper and 2) transcriptions provided directly by AosFatos using
their automated, proprietary transcription tool, “Escriba”. To assess the possible im-
pacts of transcription sources, we present the distribution of scores divided by sources:
Figure 3.5 shows distributions of Macro F1 scores for both. There’s a clear difference
between Whisper and Escriba transcriptions, validated through a statistical test of means
(Mann-Whitney U, p < 0.0001), which motivates us to understand possible causes with
an additional analysis regarding editing distance between original (i.e., as written by

AosFatos’ journalists) and transcribed claims.

Escriba - Glﬂl ocO® O (o}

Whisper - — —

0.0 0.2 0.4 0.6 0.8 1.0
Macro F1 Scores

Figure 3.5: Macro F1 score distribution by transcription source.
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3.6.3.3 Editing Distance

Here, we investigate how the classification performance changes based on the differ-
ence between the segment containing a claim and the fact-checked claim from AosFatos.
To do this, first, we calculate the editing distance between the original claim (i.e., as
written by AosFatos’ journalists) and the claim within the transcription. Then, for each
video, we compute the average editing distance between all claims in said video. Finally,
we calculate the correlation between the Macro F1 score and the average editing distance
for all sources, finding a weak Pearson correlation (—0.37) between the two variables.
This result points to an impact of the properties of transcribed text in classification per-
formance. We hypothesize that this may be due to added context provided by journalists

in some claims through information in brackets, as exemplified in Section 3.5.2.

3.6.3.4 Themes

Finally, we provide insights into theme-wise performance: a single video often
contains multiple claims, and these claims can cover a range of themes that AosFatos’
journalists annotate. To start, we compute the frequency of these themes within our
dataset and order them from most to least frequent. Figure 3.6 illustrates how the Macro
F1 scores are distributed among the top 7 most prevalent themes, each occurring at least
100 times in our dataset. We notice that the performance is generally consistent across
different themes, except for claims related to Congress and the Judicial System, which
exhibit poorer performance. For each theme, we add the number of times they occur in
parenthesis on the x-axis of Figure 3.6, and although “Judicial System” and “Congress”
have distributions skewed to lower Macro F1 values, they have similar frequencies to
“Environment” and “Elections”. These results point to the possible effects of different
themes in misinformation span detection in videos, and further analyses are left for future

work.
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Figure 3.6: Macro F1 score distribution for the seven most common themes in our dataset.
In parenthesis, the number of times that each theme occurs.

3.7 Employing LLMs

3.7.1 Fine-tuning

Our work on misinformation span detection, so far, showed the feasibility of the
task, which can be improved in future work, particularly using larger language mod-
els, such as LLaMa [99, 100] or ChatGPT [1]. Specifically, LLMs leverage architectural
advancements that yield high-quality, contextually relevant responses without extensive
fine-tuning, contrasting with smaller models such as BERT or T5.

Initially, we tested a fine-tuned classifier built with the 13B!? variation of LLaMa
2 and trained for three epochs, selecting the best-performing model using a validation set.
We used a LoRA [45] approach for fine-tuning for better efficiency, which only adjusts a
small percentage of weights (6% in our case). We set out to test classifiers with varying
undersampling ratios, as we did for BERTimbau and PTT5-based classifiers. We tested
a LLaMa-based classifier trained using an undersampled version of BOL4Y with 1-to-1,
1-to-10, and 1-to-100 ratios, with results shown in Table 3.6. For comparison purposes,
we also reiterate 1) the results for the best-performing versions of BERTimbau (1-to-
75) and PTT5 (1-to-25) and 2) respective models trained with a 1-to-1 ratio version of

BOLA4Y. However, our LLaMa-based classifiers cannot outperform the much less costly

1213 billion parameters
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BERT and T5-based approaches. In summary, the tradeoff between computational cost
and performance was not worthwhile in our experiments, so we turned to alternatives

that leverage LLMs in potentially more efficient ways via in-context learning.

Table 3.6: Results for LLaMa classifier. We also recall the best models for BERTimbau
and PTT5 for comparison purposes

BERTimbau PTT5 BERTimbau PTT5 LLaMa 2 LLaMa 2 LLaMa 2
(1-to-75)  (1-t0-25)  (1-to-1)  (1-to-1) (1-to-1) (1-to-10) (1-to-100)

Balanced Accuracy 0.69 0.70 0.82 0.81 0.77 0.75 0.49
Macro F1 0.68 0.64 0.49 0.49 0.45 0.63 0.32
Precision (Class 1) 0.43 0.30 0.09 0.08 0.08 0.24 0.02
Recall (Class 1) 0.99 0.97 0.75 0.76 0.69 0.96 0.61

3.7.2 In-context Learning

Another way to leverage LLMs’ extended capabilities is through in-context learning
(ICL) [11], that is, learning from a few examples in the context of the prompt. Dong et al.
[31] distinguish between supervised learning and in-context learning: ”Different from su-
pervised learning requiring a training stage that uses backward gradients to update model
parameters, ICL does not conduct parameter updates and directly performs predictions
on the pretrained language models. The model is expected to learn the pattern hidden in
the demonstration and accordingly make the right prediction.”. Figure 3.7 illustrates an
example of misinformation classification via in-context learning.

In this section, we show a proof-of-concept classification experiment using in-
context learning. The goal is to leverage the capabilities of large language models, namely
LLaMa 2, to perform detection through ICL.

Although ICL is more efficient than fine-tuning an LLM, it is still a costly approach.
So, for this experiment, we use a subset of the BOL4Y: We consider all 2,355 false claims
and select the same amount of non-misinformative claims, totaling 4710 segments for
classification.

As discussed in Chapter 2, the idea of using in-context learning is to remove the
costs of fine-tuning LLMs by providing demonstrations as part of the prompt, which can
be effective for many tasks, such as sentiment analysis. In our task, we provide segments
of videos as demonstrations followed by their label and then prompt the model with a new
segment for its label. We performed multiple rounds of prompt engineering and settled
on the prompt shown in Figure 3.8.

We also select the demonstrations used in our prompts, as shown in Figure 3.9.

Recall that each video has at least one theme, with many having two, as expertly an-



3.7. Employing LLMs 43

ya -

Sentence: "Bolsonaro won the 2022 elections!" Class: Misinformation

Sentence: "Voting machines are trustworthy" Class: Reliable Information

K demonstration
examples

Sentence: "Lula stole the election" Class: Misinformation

Sentence: "Voting machines are safer than paper ballots" Class: Reliable Information

New query { Sentence: "Bolsonaro refused covid vaccines" Class:

o )

Input

‘ Large Language Model I

Output

Reliable
Information

Figure 3.7: Example of misinformation detection via in-context learning

notated by AosFatos’ journalists. Then, given a video segment we want to classify, we
retrieve the theme of the video that contains said segment. Afterward, we randomly se-
lect other videos of the same theme and extract both positive and negative examples as
demonstrations. If a video has more than one theme, we select half of the demonstrations
from videos of each theme. We then feed this prompt to the LLaMa model.

We experimented with two different LLaMa 2 variations, 13B and 70B, on an
A100 GPU with 80GBs. We utilized the 70B variation with 8-bit quantization and the
13B version with full precision. Our goal was to perform a comprehensive assessment
of our setup as we tested two model variations, one of which is one of the largest open-
weight models available. Moreover, we also wanted to compare performance across model
variations.

Recall that we consider two classes, misinformation and non-misinformation, which
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Figure 3.8: Example of one prompt used.
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Figure 3.9: Building our prompts. We select segments, both negative

we use when building the demonstrations in our prompts, as exemplified in Figure 3.9.
However, as LLMs are generative models, sometimes they do not adhere to using only
one of the two words and output unrelated words or gibberish. We aimed to quantify
our results using the same metrics used in Section 3.6.1. So, whenever our model outputs
unrelated words, we treat it like an error: we check the correct label for that instance
and attribute the opposite class as our prediction. For example, if our model outputs
gibberish, but the proper label is ”"misinformation”, we consider our prediction "non-
misinformation”. We do this to provide a clear evaluation setup that allows us to use
classic machine learning metrics.

We lowercase all outputs and remove all whitespaces and punctuation to normalize
the output tokens, focusing on standardizing the outputs, which will be useful when
grouping equivalent predictions further on. Table 3.7 shows the number of predictions

split by class across the two LLaMa variations. 70B has higher prompt adherence than



3.7. Employing LLMs 45

13B 70B
Misinformation 3239 3333
Non-misinformation 475 1203
Other 996 174

Table 3.7: Predictions grouped by class for each model

13B; that is, most answers follow the command given, outputting one of the two correct
classes, an expected result given the difference in model size. Table 3.8 displays each
model’s top 40 most frequent outputs. We highlight that, besides more output variation,
the 13B model also shows a few terms in English instead of Portuguese, which does not
occur in the 70B variation, which we hypothesize is also due to different capabilities due
to model size.

A few terms that can be read as equivalents to our two classes are also present in
both models. We highlight ”falso” (line 4) and "verdade” (line 5) for 13B and ”verdade”
(line 17) and "verdadeiro” (line 18) for 70B. We choose not to compute performance
metrics considering these instances as they require a manual evaluation, which defeats

the purpose of our automated misinformation detection approach.
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LLaMa 13B LLaMa 70B
Output # of occurrences Output # of occurrences
1 | desinformacao 3239 desinformagao 3333
2 | verdadeiro 475 verdadeiro 1203
3 | nao 307 nao 27
4 | falso 112 okay 6
5 | verdade 78 bolsonaro 5
6 | desinformado 76 impossivel 4
7 | sim 38 agenda 3
8 | based on the statements 33 exagero 3
9 | incorrect 21 brasil 3
10 | falsidade 16 falso 2
11 | based on the information 13 caro 2
12 | engano 12 respeito 2
13 | ironia 8 impeachment 2
14 | okay 7 ok 2
15 | desinformados 7 desinformado 2
16 | falsa 6 ironia 2
17 | desastre 6 verdade 2
18 | based on the text 6 verdadeira 2
19 | sure here 5 paraguai 1
20 | nenhum 5 para 1
21 | zero ) percepg¢ao 1
22 | brasil 5) perguntar 1
23 | falsario 4 polémico 1
24 | nenhuma 4 parabéns 1
25 | okay here are 4 politica 1
26 | sure here are 4 participagao 1
27 | bolsonaro 3 a 1
28 | liberdade 3 orientacao 1
29 | lula 3 oportunidade 1
30 | transparéncia 3 opiniao 1
31 | heres the 3 okay i 1
32 | desinformadas 3 obrigado 1
33 | desconhecido 3 nao nao 1
34 | com base nas inform 3 norte 1
35 | errado 2 normalidade 1
36 | opiniao 2 negocios 1
37 | engana 2 negou 1
38 | com base nas res 2 okay aqui 1
39 | false 2 projeto 1
40 | here are the answers 2 politicos 1

Table 3.8: Top 40 most frequent outputs segmented by model variation. Whitespace and
punctuations have been removed.

We then evaluate classification performance, shown in Table 3.9, using precision

and recall for class 1 (misinformation), balanced accuracy, and macro-fl. As expected,

the 70B model performs better than the 13B version, with both higher precision and recall
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for class 1, resulting in a higher macro-F1. However, we observed poor performance that
did not compare with the best BERT or TbH-based models shown in Table 3.2.

13B 70B
Balanced Accuracy 0.37 0.51
Macro F1 0.31 0.48
Precision (Class 1) 0.42 0.51
Recall (Class 1) 0.08 0.27

Table 3.9: Results for proof-of-concept experiment with ICL

3.8 Limitations

Next, we discuss some limitations of our methodology on misinformation span
detection. First, although we use Whisper, a high-quality transcription model, audio
transcriptions can still be noisy data, and transcription models depend heavily on the
audio quality to yield good results. Additionally, Whisper does the segmentation process
automatically and on a sentence level. Currently, word-level segmentation is not sup-
ported in Whisper [68]. Some transcriptions come from Escriba, AosFatos’ proprietary
transcription service that does not disclose details on implementation.

Additionally, although hard annotation was done by professional fact-checkers
(journalists), and the task in our study was very straightforward (check the similarity
of two segments), segment matching has a subjective component which can be a limita-
tion.

Finally, our data is focused only on the Brazilian context, which is restricted to
the Portuguese language. Representativeness is an important but challenging issue in
any empirical study such as ours. We argue that the Brazilian context is relevant to
the field of misinformation, and our data covers a wide range of themes highly exploited
by misinformation campaigns over four years [98, 83]. For instance, our data includes
Bolsonaro’s livestreams, which are organized periodically and used to construct narratives

along different topics that would favor the former Brazilian president.
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3.9 Discussion

The work presented in this chapter aimed to define the task of misinformation span
detection, showcase initial efforts in solving the task, and evidence additional factors that
might affect performance.

We proposed two novel datasets for the task (i.e., BOL4Y and EI22) and aimed to
assess multiple classification setups. The great imbalance between classes (i.e., misinfor-
mation and non-misinformation) in the BOL4Y dataset prompted us to test undersampled
versions of it, that is, undersampling the majority class (i.e., non-misinformation) in the
multiple classification setups. We employed two language models fine-tuned for Brazilian
Portuguese in our tests, BERTimbau and PTT5, over multiple undersampling ratios. We
found that different models have distinct undersampling ratios that work best, pointing to
the optimal parameters being model-specific, with our best model reaching a 0.68 Macro
F1 score.

We also performed tests with the Edited dataset to understand if added context
and less noisy data could foster more effective classification. We found this to be the case,
as unpolished claims degrade performance, with much better performance in the edited
dataset for both models. Furthermore, we proposed temporal experiments that aimed to
assess the robustness of these models over time in two distinct setups, finding that both
models yield fair results, which can be useful in a real-world setting. We also performed a
cross-dataset experiment by training models on BOL4Y and testing on the EI22 dataset,
achieving a Macro F1 of 0.71, pointing to cross-dataset robustness. Moreover, we aimed
to identify additional factors affecting performance, discovering variations based on the
transcription method, the claim’s theme, and the level of text editing, which can guide
future efforts in misinformation span detection.

Finally, we performed proof-of-concept tests with LLaMa 2, classifying a subset
of the BOLAY dataset via 1) fine-tuning and 2) in-context learning. We found that the
fine-tuning approach is not justifiable, as it does not point to a significant increase in
performance and demands much higher computational costs than training a BERT or
Tbh-based classifier. Additionally, our ICL strategy, albeit much less costly than its fine-
tuning counterpart, does not yield good results, with low macro-F1 and accuracy. We
experimented with two LLaMa variations, including the largest available when writing
this thesis, and found the performance of both models to be subpar. We hypothesize that
this might be due to these pre-trained models’ intrinsic limitations, in addition to the

nature of our data and task.
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3.10 Future Work

In future work, we want to incorporate more features in the classification pipeline,
such as metrics related to abusive language, such as toxicity, profanity, and inflammatory
scores; this can be achieved with tools such as Perspective API,'* which we believe can
provide valuable data for improved classification approaches. We are also convinced that
explicability frameworks, such as SHAP [52] or LIME [84], can help us probe into our
classifiers, evidencing their inner workings and exploring error cases.

Additionally, we also want to experiment with additional features extracted from
the video itself, such as facial expressions, as we believe that these can add valuable
information to our classifiers. To achieve this, we can leverage vision LLMs, such as
LLaMa 3.2.' Finally, since LLMs usually have a data cutoff of several months before
their release, additional rounds of fine-tuning can help add new knowledge to these models,

potentially improving performance.

Bhttps://perspectiveapi.com/
Mnttps://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/


https://perspectiveapi.com/
https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/

20

Chapter 4

Conclusion

Online misinformation is a rampant, multi-faceted issue that affects online environments,
taking on various forms, such as memes, images, and content disseminated through social
networks, dedicated communities, and messaging apps like WhatsApp and Telegram. It
spreads through various mediums, encompassing audio, text, images, and video content.
Given the relevance and ubiquity of the problem, we aimed to propose mitigation solutions
for misinformative content.

In this work, we presented the first effort to explore the problem of misinformation
span detection in videos, focusing on videos flagged as misinformative by expert fact-
checkers. We presented the first effort to explore the problem of misinformation span
detection in videos. In addition to determining whether a video contains misinformation,
we also identify the specific part (span) of the video where it occurs. We investigated
multiple setups to assess the challenges related to effective misinformation span detec-
tion. We achieved promising results, with our best model yielding an F1 score of 0.68,
indicating the feasibility of the task. Furthermore, we built the first two datasets for mis-
information span detection and made them available to the scientific community as one
of the contributions of our work; our datasets provide completely novel data for a new,
unexplored task. We also assessed cross-dataset performance, achieving an F1 score of
0.71 when training with the BOL4Y dataset and testing it on the EI22 dataset with both
BERTimbau and PTT5; this points to effective detection despite misinformative claims
coming from different sources. Furthermore, we perform proof-of-concept experiments
with LLaMa 2, a large language model, with both fine-tuning and ICL.

Finally, others can replicate the pipeline proposed in this paper to build new
datasets for different contexts, further improving automatic misinformation detection.
We hope our methodology for misinformation span detection can be used to develop
other applications to assist fact-checkers and reduce the time spent on misinformation
detection in videos by pinpointing potential fact-checking points. Also, we argue that
identifying the spans of misinformation within videos can assist social media operators in
providing additional context to viewers when a false claim occurs. For instance, they can
include warning labels with additional context regarding a false claim as an overlay on a

video when a false claim is made.



o1

Finally, our work comes at a critical time for digital platforms. Initiatives like
the Digital Services Act (DSA) regulation have emerged as significant steps forward in
regulating digital spaces, aiming to ensure safer and more responsible online environments
through effective content moderation. Such initiatives highlight the need for more robust

automatic moderation tools, and we hope our work can improve these efforts.
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Appendix A

Statistics on Videos and Comments
From the BOL4Y Dataset

Considering the BOL4Y dataset, we initially downloaded 525 videos, from which 460
have comments from users available. Recall that we could only match claims from 430
videos, as described in Section 3.2.1.3. However, all videos we downloaded were flagged as
containing misinformation, so we chose to show statistics related to the 460 videos with

user comments, which all come from YouTube. In total, we gathered 1,738,946 comments.

A.1 Videos

Figure A.1 shows the distribution of videos regarding upload date across the four

years of Bolsonaro’s presidency, with 2021 being the year with the most videos.

175,
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Figure A.1: Distribution of videos over the years.

Then, Table A.1 displays channels that posted the videos, namely the top 10 with
the most videos uploaded. We highlight that the channel that uploaded the most videos

was Bolsonaro’s official YouTube channel, with other two Bolsonaro-affiliated channels in
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the top 10: Bolsonaro TV, and Carlos Bolsonaro, with the latter being one of Bolsonaro’s
son’s channel. Additionally, from the 460 videos, 174 were live streams, which was one of

the ways Bolsonaro used to communicate with his voter base.

Table A.1: Top 10 channels with the most videos in respect to the total 460

Channel Video Count
Jair Bolsonaro 196
Foco do Brasil 108
Bolsonaro TV 29

CanalGov 15

Poder360 12

Carlos Bolsonaro 6
SBT News 6
CNN Brasil 6

Band Jornalismo 5

Os Pingos nos Is 5

Moreover, Table A.2 displays the categories YouTube attributed to each video.
Expectedly, the vast majority of videos pertain to the News & Politics category.

Table A.2: Video count by category

Video Category | Count
News & Politics 409
Entertainment 28
People&Blogs 4
Travel&Events 2

Education 7
Science&Technology 1
Gaming 6
Film& Animation 2
Sports 1

We then move to general statistics regarding the videos. As evidenced by Figure
A.2, the views distribution is heavy-tailed, with most videos having less than 2.5M views.
A similar pattern appears in Figure A.3, with a heavy-tailed distribution and most videos
receiving under 250,000 likes. Overall, we see that the videos we gathered have high

engagment, with many views and likes.
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Figure A.3: Likes per video. X-axis values should be multiplied by 1e6

Furthermore, we provide insight into the length of videos (in seconds) in Figure
A.4. Most videos lie before the 5000 second mark (approximately 83 minutes), evidencing

that these videos are usually long in duration



A.1. Videos 69

Video length per video in seconds - 100 Bins

(@)
o
> 10! 4
(@]
C
(0]
=)
O
(0]
—
[

0 |

10 T8 n B |
0 5000 10000 15000 20000 25000

video length (s)

Figure A.4: Video length

Finally, Figure A.5 shows the distribution of comments per video, reinforcing the

high engagement they have.
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Figure A.5: Distribution of comments per video. 100 bins. Y-axis in log scale

We now turn to taking a deeper look into the comments’ content in Section A.2
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A.2 Comments

Figure A.6 shows the distribution of comments in regard to their word count, with
most ranging from 1 to 1000 words.
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Figure A.6: Comment word count

Furthermore, we once again employed Perspective API to the 1,738,946 comments
and display the distribution for six attributes: Toxicity, Severe Toxicity, Identitiy Attack,
Insult, Profanity, and Threat. We show results in Figure A.7 and highlight that 25%
of comments present scores equal to or higher than 0.6 for toxicity, identity attack, and

insult, pointing to significant hostility in the comments.
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Figure A.7: Distribution of Perspective Attributes

Finally, we analyze the top 20 most used emojis, displayed in Figure A.8.'. The
most used emoji used is the Brazilian flag, followed by emojis of endorsement. We also
highlight emojis that might be used by anti-Bolsonaro commenters, such as the bull /cow

related emojis, often used to antagonize Bolsonaro’s voters.

Emoji Occurence
633337
311776
A 167337
¥ 80062
= 70569
65013
i 62939
61987
™ 50611
hd 45461
40732
32083
™ 28244
=3 28057
L) 25795
= 21186
L 4 20639
20519
(L] 18450
& 15661

Figure A.8: Top 20 most used emojis

'We choose to display the emojis table as a figure due to LaTeX’s poor emoji support
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Figure B.1 shows an example of Doccano’s interface during the segment matching task.

We present the claim and the candidate segments related to it, and the user must flag

which segments (if any) comprise said claim.
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Se invadiam com bandeira vermelha érgaos publicos, como ministério disso e daquilo, tocavam fogo, quebravam
bancos, black blocs, ninguém investigava nada, era democratico.
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Figure B.1: Example of Doccano’s interface

Isso era democratico,
ninguém investigava nada

Isso era democratico
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