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Resumo

A desinformação online é um dos problemas mais desafiadores da modernidade, que apre-

senta consequências severas, incluindo polarização poĺıtica, ataques à democracia e riscos

à saúde pública. A desinformação se manifesta em qualquer plataforma com uma grande

base de usuários, incluindo redes sociais e aplicativos de mensagens. Ela permeia todas

as formas de mı́dia e conteúdo, incluindo imagens, texto, áudio e v́ıdeo. Em especial,

a desinformação em v́ıdeo representa um desafio multifacetado para os verificadores de

fatos, dado a facilidade com que quaisquer indiv́ıduos podem gravar e distribuir v́ıdeos em

várias plataformas de compartilhamento de v́ıdeos. Trabalhos anteriores investigaram a

detecção de desinformação baseada em v́ıdeo, focando em se um v́ıdeo compartilha desin-

formação ou não a ńıvel de v́ıdeo. Embora essa abordagem seja útil, ela fornece apenas

uma visão limitada e não facilmente interpretável do problema, dado que não fornece um

contexto adicional de quando a desinformação ocorre dentro dos v́ıdeos e qual conteúdo

é responsável por tornar o v́ıdeo desinformativo.

Neste trabalho, tentamos preencher essa lacuna de pesquisa propondo uma nova

abordagem para a detecção de desinformação em v́ıdeos, focando na identificação da seção

dos v́ıdeos que contêm desinformação, uma tarefa que enquadramos como misinformation

span detection. Apresentamos dois novos conjuntos de dados para esta tarefa, ambos

contendo alegações falsas e o momento do v́ıdeo em que elas aparecem. Transcrevemos o

áudio de cada v́ıdeo para texto, identificando o segmento do v́ıdeo em que a desinformação

aparece, resultando em dois conjuntos de dados com mais de 600 v́ıdeos com mais de 2.400

segmentos contendo alegações verificadas e anotadas. Em seguida, empregamos classifi-

cadores constrúıdos com modelos de linguagem de última geração, e nossos resultados

mostram que podemos identificar em qual parte de um v́ıdeo há desinformação com uma

pontuação F1 de 0,68. Além disso, também apontamos novas direções para a tarefa de

misinformation span detection usando in-context learning. Esperamos que nosso trabalho

possa auxiliar os verificadores de fatos, além do desenvolvimento de ferramentas automa-

tizadas de detecção de desinformação e moderação automática que estejam alinhadas com

as necessidades em evolução das plataformas digitais.

Palavras-chave: misinformation; natural language processing.



Abstract

Online misinformation is one of the most challenging modern issues, yielding severe con-

sequences, including political polarization, attacks on democracy, and public health risks.

Misinformation manifests in any platform with a large user base, including online so-

cial networks and messaging apps. It permeates all media and content forms, including

images, text, audio, and video. Distinctly, video-based misinformation represents a mul-

tifaceted challenge for fact-checkers, given the ease with which individuals can record and

upload videos on various video-sharing platforms. Previous research efforts investigated

detecting video-based misinformation, focusing on whether a video shares misinformation

or not on a video level. While this approach is useful, it only provides a limited and

non-easily interpretable view of the problem given that it does not provide an additional

context of when misinformation occurs within videos and what content (i.e., claims) are

responsible for the video’s misinformative nature.

In this work, we attempt to bridge this research gap by proposing a novel approach

for misinformation detection on videos, focusing on identifying the span of videos that are

responsible for the video’s misinformation claim, a task we frame as misinformation span

detection. We present two new datasets for this task, both containing false claims and the

video moment in which they appear. We transcribe each video’s audio to text, identifying

the video segment in which the misinformation claims appear, resulting in two datasets of

more than 600 videos with more than 2,300 segments containing annotated fact-checked

claims. Then, we employ classifiers built with state-of-the-art language models, and our

results show that we can identify in which part of a video there is misinformation with an

F1 score of 0.68. Additionally, we also point to new directions for misinformation span

detection using in-context learning. We hope our work can assist fact-checkers and the

development of automated misinformation detection and robust automatic moderation

tools that align with the evolving needs of digital platforms.

Keywords: misinformation; natural language processing.
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Chapter 1

Introduction

Social networks and digital platforms are integral to any user’s online experience, consti-

tuting an essential part of modern life. These platforms enable a wide range of interactions

through various applications, becoming essential to people’s daily lives. Despite their nu-

merous benefits, such as bridging distances, fostering more effective communication, and

enabling marketing strategies, they also bring substantial problems and new challenges

to our society, for example, offering a fertile ground for misinformation campaigns.

Misinformation can be defined as pieces of false information that try to appear

legitimate by claiming to be real [97, 12, 106], and is one of the most important issues to

surface in recent years, affecting modern life in various ways, such as working as an engine

for campaigns that promote attacks on democracy [92, 6], political polarization [4] and

radicalization [92, 6], and even health-related issues, as evidenced during the COVID-19

pandemic, with the spread of anti-vaccination misinformation [71, 40]. Misinformation’s

deep impact on modern life is also evidenced by the surge of counter-acting initiatives, such

as the International Fact-Checking Network (IFCN), an institution devoted to combating

misinformation and widely recognized for its importance, resulting in a nomination for

the Nobel Peace Prize in 2021 [110]. Although initiatives to combat misinformation exist,

it is still an open, multi-faceted problem.

One of the main challenges in combating misinformation lies in the complexity

of digital platform environments and the various forms in which it can arise. For ex-

ample, misinformation can be launched through websites that appear reliable sources of

information but are, in reality, dedicated to disseminating misinformation, often with

political motivations [8]. Moreover, misinformation can manifest in different formats,

including news pieces, memes, images, and content shared across social networks, special-

ized groups, and messaging platforms like WhatsApp and Telegram. It spreads through

various mediums, encompassing audio [61, 33, 62], video [48, 107, 24, 79, 87, 77, 47, 91],

images [38, 78, 94, 46, 58, 93] , and text-based content [42, 41, 109, 73, 60, 75, 25, 59].

The ubiquity of misinformation online motivates our work, which focuses on ana-

lyzing and detecting misinformation through state-of-the-art natural language processing

techniques. To this end, as further discussed in Section 1.1, we turn to improving mis-

information detection, focusing on video-based misinformation, where we leverage the
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transcription of the video’s audio to locate where misinformation appears. In addition to

proposing a novel misinformation detection framework, we also want to provide a proof-

of-concept analysis of how state-of-the-art classifiers perform over noisy text.

1.1 Misinformation in Videos

As mentioned in Section 1, misinformation is one of the most challenging prob-

lems in our society in the recent years and can take many forms, which offers a great

challenge when proposing solutions. Misinformation in video content represents a partic-

ularly complex problem due to the massive amount of videos uploaded daily in platforms

like YouTube and TikTok. In a single day, YouTube receives a volume of user-generated

videos equivalent to 720,000 hours. 1

Fact-checking agencies cannot keep up with the rapid spread of online misinforma-

tion without tools that facilitate journalists to identify content that is worth fact-checking.

Additionally, content moderation in videos is a growing concern for platforms such as

YouTube and TikTok, especially with novel regulations, such as the that forces the plat-

forms such as the Digital Services Act (DSA) [16], that force those platforms to remove

content that is against their terms and also provide transparency about the moderation

process.

Thus, this scenario calls for automated detection methods of misinformation in

videos. However, unlike detecting if a textual claim or image is fake, detecting misin-

formation in videos is particularly challenging as one single video can contain hours of

speech and become a very laborious task. Despite their undoubted importance, previous

research focused on detecting whether a video shares misinformation or not on a video

level [107, 48, 44]. While this approach is useful, it only provides a limited and non-easily

interpretable view of the problem given that it does not provide an additional context of

when misinformation occurs within videos and what content (i.e., claims) are responsible

for the video’s misinformation nature.

In this work, we address the problem of misinformation span detection in videos,

which involves determining the specific segments of a video where misinformation is

present. For example, Figure 1.1 depicts a real 55-minute-long video, which was fact-

checked by specialists who pointed out 16 misinformative claims (for an illustrative pur-

pose, we marked with red dots the segments in which the false claims are made). Our

effort in this work evaluates the feasibility of automatically spotting the segments of the

1https://www.globalmediainsight.com/blog/youtube-users-statistics/#stat

https://www.globalmediainsight.com/blog/youtube-users-statistics/#stat
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Figure 1.1: Example of a fact-checked video with pointers to misinformative segments

videos where these false claims appear. To do it, we used a methodology based on a

three-step approach.

First, we gathered two datasets of videos verified by the fact-checking agency Aos

Fatos2, which is part of the International Fact-Checking Network (IFCN) and one of

the most prestigious fact-checking agencies in Brazil. Both datasets contain videos and

a set of false claims made in the video. The first dataset contains 538 videos featuring

Brazil’s former president, Jair Bolsonaro, throughout his 4-year term. The second dataset

comprises 78 videos containing electoral fraud claims made by voters during the 2022

Brazilian presidential election. Our second step consists of extracting textual transcripts

from these videos and annotating the time in which each false claim appears in the video

in order to identify which segments of each video contain misinformation. Finally, in

our last step, we explored different evaluation scenarios, testing multiple classification

approaches using state-of-the-art language models in order to investigate the feasibility

of differentiating the segments containing misinformation from those that do not contain

them.

Our evaluation results indicate the feasibility of automated misinformation span

detection in videos, pointing to valuable directions for developing tools that can assist

fact-checkers and moderation in social media platforms.

To the best of our knowledge, we are the first to approach misinformation span

detection in videos. We hope our methodology and results offer guidance for future

research on the theme and a baseline for comparison. Our results show the feasibility of

using automatic detection for this task but also leave space for improvements. We hope

our work can inspire future tools to mitigate the misinformation problem in practice. We

also propose two publicly available datasets containing 538 and 77 videos, annotated with

2https://www.aosfatos.org/
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timing in the videos in which 2,355 false claims and 78 false claims occur, respectively.

To the best of our knowledge, these are the first datasets of their kind, and we believe

they are valuable resources for the research community.

1.2 Dissertation Statement

This thesis states that online misinformation can be further understood and de-

tected by leveraging state-of-the-art natural language processing methods. Online plat-

forms struggle with the diverse and evolving landscape of misinformation, encompassing

not only textual content but also other media forms like images, audio, and video. This

prompts us to improve automatic misinformation detection, specifically concerning video

content, by employing classifiers based on large-language models on the transcriptions of

said videos.

1.3 Dissertation Contributions

Our contributions are the following:

• We further develop the task of misinformation detection on videos by formalizing

the task of misinformation span detection.

• We propose two novel false information datasets with timestamp labels for misin-

formation span detection in videos.

• We define the first baselines for the task, analyzing the problem in multiple settings

and providing a thorough analysis.

• We point to possible factors affecting performance, such as the noise level in the

videos analyzed, which can guide further efforts in the task.
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1.4 Dissertation Outline

Here we present a brief summary of the contents detailed in each chapter of this

dissertation:

• Chapter 2 presents previous works on misinformation and text-based classifiers

related to our domain.

• Chapter 3 presents our results for misinformation span detection on videos

• Chapter 4 concludes our work, highlighting main findings and future work possi-

bilities.
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Chapter 2

Related Work

This chapter discusses previous works on online misinformation. Section 2.1 provides

insight into how misinformation is a central and interconnected problem online. Then,

Sections 2.2, 2.3, and 2.4 cover studies on the multiple media forms misinformation can

encompass on social media, previous studies on language models for misinformation de-

tection, and in-context learning, all of which are vital for Chapter 3.

2.1 Online Misinformation

Misinformation permeates online environments and is often associated with other

societal phenomena, such as abusive language. This section discusses the relationship

between misinformation and abusive language, one of the main current issues online.

Several works have explored the online abusive language phenomenon before, which has

been studied under several names such as hate speech [30], online harassment [39], cy-

berbullying [22], toxicity [29, 5], microaggressions [9, 3], stereotyping [66, 35], unhealthy

conversations [2] and others, and we now go over previous works that explore this phe-

nomenon in its many forms. For instance, Mathew et al. [63] have shown that hateful

content spreads faster and can reach a broader audience on social networks, in conso-

nance to what Pennycook et al. [74] and Sylvia Chou et al. [96] concluded. Moreover,

Zannettou et al. [108] explored news content and found that political and divisive events

are more related to hateful commenting, which shows that the use of abusive language

online is directly related to political polarization. Kwok and Wang [53] evidenced the dif-

ficulty in analyzing and detecting racism online, specifically on Twitter. Hewitt et al. [43],

Rodŕıguez-Sánchez et al. [86], and Fuchs and Schäfer [36] study misogynistic discourse on

Twitter and highlight the challenges of working with such data, with Fuchs and Schäfer

[36] focusing on instances of misogynistic language against female politicians, showing

an increase of hateful expressions against this demographic on Twitter. Additionally,

Rodŕıguez-Sánchez et al. [86] analyze how sexism is expressed in online conversations in
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Spanish on Twitter. Clarke and Grieve [20] analyze racist and sexist tweets under linguis-

tic variations users expressed, exposing distinct dynamics between the two. Other works

have also emphasized the use of abusive language against religious groups: Chandra et al.

[17] present a study on the problem of detection and categorization of antisemitism in

online platforms. In contrast, Saha et al. [88] show evidence of discrimination against

Muslims in India while also evidencing how users that employ abusive language, namely

fear speech, gather a larger following and are more central in online environments, fur-

ther evidencing the relevance of studying abusive language in online platforms and how

individuals can weaponize this form or discourse to gain relevance.

Beyond the analysis of abusive language, mitigation efforts have been proposed over

the years, as Fortuna and Nunes [34] evidenced in their comprehensive survey: Caselli

et al. [15] propose a new annotation scheme that aims to assess abusive language regarding

intention, effect, and the degree of explicitness of the message. Furthermore, Karan and

Šnajder [49] assessed abusive language classifiers on diverse datasets from various sources

and language types, revealing poor generalization of these models to different domains,

highlighting the need for further studies in the field.

Alternatively, other works also explored online misinformation. Vosoughi et al.

[104] analyzed the diffusion of true and false news on Twitter from 2006 to 2017, finding

that false information spreads further, faster, and more broadly than true news in various

categories, with human users playing a more significant role in spreading false information

compared to robots. Blankenship [7] also explored the landscape of misinformation on

Twitter, examining 14,545,945 tweets produced in response to the Las Vegas shooting1

and its second anniversary, aiming to determine the extent of public responses affected

by information pollution, and to pinpoint the nature and dissemination of misinformation

on Twitter and in news coverage. Nan et al. [67] report on the rapid growth of health

misinformation research, highlighting its sources, prevalence, characteristics, and impact,

ultimately suggesting that while it originates from various sources, especially mass and

social media, efforts to mitigate its effects are showing promise in correcting mispercep-

tions. Furthermore, other works [74, 96] agreed that false information spreads faster than

genuine content.

Other works on misinformation focus on proposing mitigation solutions, such as

Vicario et al. [103], who introduce a framework that uses users’ behavior on social me-

dia to predict potential targets for misinformation and fake news, effectively identifying

fake news. Paschalides et al. [69] introduce Check-It, a web browser plugin designed to

efficiently detect fake news by combining various signals. Saxena et al. [90] address the

challenge of changing user opinions by identifying a strategic set of users to counteract

misinformation, considering users’ biases and social interactions, with successful results

demonstrated on Facebook and Twitter datasets. Furthermore, Karduni et al. [50] pro-

1https://en.wikipedia.org/wiki/2017_Las_Vegas_shooting

https://en.wikipedia.org/wiki/2017_Las_Vegas_shooting
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poses Verifi2, an educational tool for combating misinformation, as indicated by interviews

conducted with experts from various fields.

The works we discussed so far have evidenced how abusive language and misin-

formation are key online issues, and other recent works have discussed how these issues

are connected. Regarding these problems’ interplay, several social studies have theorized

about their relationship [23, 70, 21]. Accordingly, Giachanou and Rosso [37] endorsed

the importance of more quantitative studies on both problems. The authors presented

the evaluation process, datasets, and shared tasks related to online misinformation and

hateful content. Also, they mention the importance of textual features in detecting such

content, which enforces the importance of studying textual patterns. Another remarkable

work that explored online abusive language and misinformation dynamics is from Cinelli

et al. [19]. In their work, the authors described how users spread offensive content on

the YouTube platform and explored its relationship with misinformation-spreading com-

munities. However, the authors focus on online comments written in Italian by YouTube

users, which is a narrow sample of such content online. Finally, Matos et al. [64] analyzed

the interplay between abusive language and misinformation in news articles’ production

patterns, focusing on the textual news content; they performed a textual analysis of on-

line news and concluded that false news presents a higher prevalence of abusive language

when compared to real news. The found patterns are consistent across datasets, even

when they belong to different topics, highlighting the relationship between these issues.

The works on misinformation and abusive language and, ultimately, their relation-

ship show how central misinformation is in the study of online harm, as it is intertwined

with other relevant phenomena. We argue that this motivates further efforts in misinfor-

mation detection and also grounds the work presented in this thesis.

2.2 Media-specific Misinformation

Social media platforms enabled much faster communication between users and

increased the speed of information spread in general. However, this phenomenon also

facilitated the spread of online misinformation, prompting platforms and researchers to

present solutions to this problem.

Misinformation can take many forms, and media-specific efforts to detect them

have been proposed, such as those targeting text posts on social media (e.g., tweets)

[42, 41, 109, 73, 60, 75, 25, 59], images [38, 78, 94, 46, 58, 93, 51], and videos [48, 107, 79,

87, 77, 47, 91, 44].

Among all forms of misinformation, video is one of the most challenging due to the
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intrinsic difficulty of working with such data type, which usually requires more processing

power than, for instance, text, and previous works have proposed mitigation solutions

for the issue. Yi Liaw et al. [107] propose a dataset of conspiracy videos on YouTube

and a pipeline to detect such videos. However, they perform classification at a video

level, not pointing to where the conspiracy claims are made. Hou et al. [44] propose a

similar approach for medical videos, also providing a dataset of annotated YouTube videos

containing misinformation on prostate cancer, but using an SVM-based classifier for their

experiments.

Other works on misinformative videos focus on the platforms where they were

uploaded, such as the work proposed by Hussein et al. [47], which highlights the issue of

misinformation on videos by auditing YouTube and evidencing how their recommendation

systems can induce users to misinformative filter bubbles and grounding the need for more

automated tools for misinformation detection on videos.

Additional works focus on manipulated videos: Sabir et al. [87] focuses on deceptive

face manipulation on videos, also referred to as deepfakes, a form of misinformation built

through synthetically generated media. Similarly, Pu et al. [77] centers on investigating if

deepfake detection methods proposed in the literature generalize to real-world deepfakes.

Other studies focus on short videos specifically: Shang et al. [91] investigate misin-

formative videos about COVID-19 on TikTok, one of the largest video-sharing platforms,

by leveraging captions and video components to propose a classification approach. Qi

et al. [79] also focuses on short video fake news and builds a dataset by crawling Chinese

fact-checking portals, providing a baseline for binary multimodal detection of fake news

videos’ detection.

Another important work on misinformative videos was presented by

Jagtap et al. [48] where the authors propose a framework to classify videos into misinfor-

mation and non-misinformation, analyzing 2125 videos containing information about the

vaccines controversy, the 9/11 conspiracy, chem-trails, the moon landing, and flat earth.

However, like [107, 44, 91, 47, 79], they also focus on binary classification on a video level,

lacking an approach that can infer in which part of the video the misinformation appears.

Considering previous works, we propose a new approach to misinformation detec-

tion on videos, further discussed in Chapter 3. Specifically, we set ourselves apart from

previous works limited to the binary classification of videos containing misinformation.

Our work also differs from previous ones that are limited to short videos. In summary,

we propose a general approach to misinformation detection that can be used for videos

of varying lengths while identifying which section of the video presents misinformative

content, a task we frame as misinformation span detection.
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2.3 Language Models for Misinformation Detection

Natural language processing has advanced significantly in light of Transformers-

based pre-trained models. Those models, such as BERT [28] and GPT [10], allowed the

processing of large corpora in an unsupervised fashion to yield contextual and meaning-

rich embeddings. This capacity is due to their quadratic attention mechanism [102],

which allows for representing a token given all the other tokens in a sentence, lead-

ing to better contextualization and text understanding. This mechanism allowed the

Transformer architecture to overcome the limitations of older NLP architectures such as

LSTMs and CNNs [102]. Therefore, given their contextual text understanding capabil-

ities, Transformers-based language models’ performance is currently state-of-the-art for

various tasks [28, 10].

Transformers-based models have also aided automatic misinformation detection.

Pelrine et al. [73] have shown that simple Transformers-based baselines, such as BERT

and RoBERTa reached state-of-the-art performance for misinformation detection on social

media posts, for instance, Twitter. Raza and Ding [81] also employed Transformers-based

models for misinformation detection by proposing an encode-decoder model, similar to

the BART architecture [55], combined with social media features to detect fake news.

Praseed et al. [76] also proposed a Transformers-based model for a similar task: their

Transformers-based model ensemble improved the effectiveness of Hindi misinformation

detection. Moreover, Truică and Apostol [101] provided comprehensive empirical work

showing the performance of various Transformers models for fake news detection: in

their work, authors show how their proposed model MisRoBÆRTa compares to other

Transformers baselines and their performance in different datasets and parameter settings.

Overall, recent work endorses the state-of-the-art performance of Transformers models in

misinformation detection tasks, motivating us to employ Transformers-based models for

misinformation span detection in Chapter 3.

Other architectures have been proposed in recent years, such as LLaMa [99], which

is based on the decoder part of the Transformer, adapting its architecture in several

components. Additionally, the LLaMa models available to the public are much larger,

parameter-wise, than the BERT models. For comparison, the largest BERT has 340 [28]

Million parameters, while the largest LLaMa has 65 Billion parameters [99]. The large

number of parameters, along with the updates in architecture and extensive amount of

training data, led LLaMa’s performance to reach the state-of-the-art in various tasks [100].

Similar performance is also seen in related language models, such as GPT [10] and PaLM

[18]. Yet, the large amount of parameters demands a higher training cost, which can

sometimes be prohibitive.
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2.4 In-context Learning

Large language models (LLMs) have surfaced recently, enabling unprecedented

performance in multiple natural language processing tasks. Traditionally, to adapt an

NLP model for a new problem or dataset, one would need to do multiple rounds of fine-

tuning, which is still the case for language models such as BERT or T5. However, LLMs

have fostered a new paradigm in Natural Language Processing: In-Context Learning

(ICL), which consists of learning through a few examples in the prompt.

Dong et al. [31] state that the ”key idea of in-context learning is to learn from

analogy.” ICL requires demonstrations, which serve as examples in the prompt, and a

query question. The demonstrations and the query are concatenated and fed as input to

the model for prediction. However, in an ICL setup, no model parameters are updated.

Unlike in a traditional supervised learning setting, the demonstrations are expected to be

enough for the model to learn the pattern and make the correct prediction.

Since its proposal, ICL has been used in multiple contexts. For instance, Sahu et al.

[89] evaluate one sentiment classification (GoEmotions [26]) and three intent classification

datasets (BANKING77 [14], HWU64 [56], and CLINC150 [54]), achieving state-of-the-art

performance in all tasks using open source LLMs. They also highlight how larger models

are needed to take advantage of more demonstrations in the prompt, as smaller models

see a plateau or decrease performance as more demonstrations are used.

Min et al. [65] present one of the most comprehensive studies of ICL in different

NLP settings, exploring 142 NLP datasets, including question answering, classification,

and paraphrase detection, among others. The authors propose a meta-learning approach

in which a pre-trained language model is tuned to do ICL on multiple training tasks;

this enables a model to effectively learn a new task during inference without needing

parameter updates. This new approach outperforms baselines, including ICL (with no

meta-training), and, more surprisingly, yields on-par performance with models 8x bigger

and fine-tuned on a specific target task, which showcases the effectiveness of ICL.

Although ICL is widely used in the literature, few works tackle its use in misinfor-

mation detection. Related to the domain of this work, Liu et al. [57] explore cross-domain

misinformation detection using in-context learning. The authors propose RAEmoLLM,

a framework that leverages ICL based on affective information to detect misinformation,

which removes the cost of fine-tuning LLMs. Authors also perform experiments with zero-

shot and few-shot methods that do not incorporate affective information, showing that

doing so is an effective addition to the detection process. Although this work sheds light

on how to incorporate ICL in misinformation detection, it does not tackle misinformation

in videos, and it especially does not tackle tasks similar to misinformation span detection,

a gap we bridge in this work.
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Chapter 3

Misinformation span detection

3.1 Problem description

As presented in Section 1.1, we now turn to propose mitigation efforts in this Chap-

ter, specifically, misinformation detection on videos, proposing the task of misinformation

span detection. The objective of this task is the detection of the spans that make a piece

of content misinformative. 1 2 Specifically, we aim to detect whether a piece of content

is misinformative and, in particular, which spans of the content are responsible for the

content’s misinformative nature. Identifying these spans of false claims is paramount as

it can assist fact-checkers and social media operators in providing the necessary context

(e.g., warning labels) at the exact time of appearance of the false claims.

Although finding mis/disinformation in videos is greatly important, previous work

lacks sufficient data for misinformation span detection. In this light, we build two novel

datasets for the task: 1) BOL4Y and 2) EI22, further discussed in Sections 3.2 and 3.3.

3.2 BOL4Y dataset

To build our first dataset, henceforth referred to as BOL4Y, we leverage a list of

false claims made by Jair Bolsonaro, Brazil’s former president. AosFatos,3 one of Brazil’s

biggest fact-checking agencies, compiled a list of 6,685 claims through Bolsonaro’s 4-

Year presidential term.4 These claims come from multiple sources, such as interviews,

written social media posts, and videos that Bolsonaro shared. Each fact check contains

1Our task is analogous to the Toxic Spans Detection task presented by Pavlopoulos et al. [72].
2As discussed in the next sections, our approach focuses on the transcriptions of the videos. That is,

no visual elements are used for detection.
3https://aosfatos.org/
4https://www.aosfatos.org/todas-as-declara%C3%A7%C3%B5es-de-bolsonaro/

https://aosfatos.org/
https://www.aosfatos.org/todas-as-declara%C3%A7%C3%B5es-de-bolsonaro/
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the following data:

• Claim: A sentence that summarizes the false claim.

• Fact-check: Fact-check produced by AosFatos’ journalists.

• Broad theme: The theme and broad topic of the claim (e.g., infrastructure,

COVID-19 pandemic).

• Repetition count: The number of times Bolsonaro made that claim on other

occasions, including the dates for each occurrence.

• Source: The link to the source (e.g., social media post) that includes the false

claim. Although most claims have repetitions throughout Bolsonaro’s presidency,

AosFatos only lists the source for one of those occurrences. Also, it includes the

category of the source (e.g., interview, live stream, etc.).

• Media repercussion: Links to other media websites that published a news piece

about the claim.

We created our dataset by scraping AosFatos’ website in March 2023, collecting

data for 6,685 claims from 1,595 unique sources, which vary and include, for example, news

pieces from major outlets, posts on social media, and official declarations on governmental

websites. Then, we specifically focused on claims with video-based sources, primarily from

social media platforms like YouTube, Facebook, TikTok, and occasionally from news

websites. Then, we visited the sources and downloaded the videos, obtaining a set of

525 videos. Also, we note that for 121 claims, AosFatos did not provide a link to the

source. However, they provide the transcript of the video that comes from AosFatos’

transcription service, Escriba. 5 We complement this dataset with these readily available

textual transcripts. Overall, this dataset includes 525 videos sharing false claims and 121

textual transcripts (corresponding to videos sharing false claims) obtained from AosFatos’

transcription service. The next subsection details how we built the BOL4Y dataset using

the data mentioned. We also include a more in-depth analysis of these videos’ metadata,

including comments, in Appendix A.

3.2.1 Building BOL4Y

Our methodology for building BOL4Y consists of the following steps: 1) Tran-

script extraction and segmentation: We normalize our dataset so that we convert
5https://escriba.aosfatos.org/en/

https://escriba.aosfatos.org/en/
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Figure 3.1: Overview of our methodology regarding the BOL4Y dataset

each video to a textual transcript, which we segment into pieces; 2) Segment embed-

dings generation: We convert the segmented textual data from the transcript into

dense embeddings using a BERT-based model; 3) Perform segment matching: We

semantically match the segments with the annotated false claims from AosFatos using

the segment embeddings; and 4) Classification: We perform a segment-level classifica-

tion to identify segments sharing false information, essentially solving the misinformation

spans detection task. We present an overview of our methodology in Figure 3.1. Below,

we elaborate on these steps and our experimental setup.

3.2.1.1 Transcript Extraction & Segmentation

Our approach to misinformation span detection in videos leverages the transcrip-

tions of videos’ audios. To extract transcriptions from videos, we use OpenAI’s Whis-

per [80], a state-of-the-art speech recognition model, on the audio of each video in our

dataset. Whisper takes as input an audio file and generates a textual transcription. Al-

though Whisper cannot provide word-level timestamps [68], it can segment audio into

transcribed segments (i.e., parts of the transcription) of at most 30-second windows. We

applied Whisper to the 525 video files in our dataset and extracted their textual tran-

scripts. Note that the transcripts provided by Escriba are already segmented by AosFatos’

Escriba service.
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3.2.1.2 Generating Segment Embeddings

Having converted our dataset into textual information (i.e., textual transcripts)

divided into segments, our next step is to align the transcribed segments with man-

ally annotated fact-checks provided by aosfatos. To this end, we use a state-of-the-art

transformer-based model trained and tailored for Brazilian Portuguese. Specifically, we

use BERTimbau [95], a BERT-based model [27] that is pre-trained on the Brazilian Web

as Corpus (BrWac) [105], a large Brazilian Portuguese corpus. The model was downloaded

from the HuggingFace repository, 6 and we use the base model that yields embeddings

of 768 dimensions. Moreover, we use the SentenceTransformers [82] implementation to

retrieve the embeddings from the mean pooling of the language model. In a nutshell,

BERTimbau takes as input the textual information included in a transcript segment and

generates a dense vector representation (embedding); these embeddings are the foundation

for matching segments that share misinformation as they allow us to assess the similarity

of transcript segments and fact-checked claims.

3.2.1.3 Performing Segment Matching

Here, we aim to identify the transcript segments that contain misinformation

claims, as fact-checked by professional journalists. To leverage these fact-checks as posi-

tive (i.e., misinformation) labels in our dataset, we compare all transcript segments from

a given video to the actual fact-check available for that video. This is an integral part

of our methodology as it allows us to create an annotated dataset of segments that share

misinformation and segments that do not. To achieve this, we perform the following

procedure: We use BERTimbau to extract embeddings for each segment of each video

transcript in our dataset (see Section 3.2.1.2). We also compute embeddings for each false

claim (see Claim field in Section 3.2). Recall that each false claim is associated with one

video in the dataset. Then, we compare the claim’s embedding to all video segments’

embeddings using cosine similarity. For each false claim, we consider the segment with

the highest cosine similarity as the top candidate to be examined. This part allows for

the identification of segments that potentially share misinformation, as they share textual

similarities with the known false claims. Given that a false claim may span into multiple

transcription segments, we also extract the segments before and after the segment with

the highest cosine similarity for further examination.

6https://huggingface.co/neuralmind/bert-base-portuguese-cased
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After identifying segments that potentially share false claims, we perform a manual

annotation process to verify that they are indeed sharing false claims. We use the open-

source text annotation tool Doccano7,8 to speed up the annotation procedure. For the

annotation procedure, we focus on pairs of top candidate segments and false claims with

a cosine similarity of 0.7 or higher. We selected this threshold after manual examinations

that showed that pairs with a cosine similarity of 0.7 or below were not semantically sim-

ilar. After applying this threshold and selecting all pairs of top candidate segments/false

claims with cosine similarity higher than 0.7, we end up with 2,996 pairs that we anno-

tate. For each claim, we prompt the annotator to flag which of the three selected segments

comprise the claim. We choose a comprehensive approach and flag every segment that

has at least one word that is part of the claim. We also add flags to i) signal if more

segments are needed to capture the whole claim, ii) signal if there is a mistranscription

(i.e., some words of one or more segments seem to be mistranscribed); iii) None of the

segments shown match the fact-checked claim.

We perform additional rounds of segment matching with the instances flagged as

missing a part of the claim, adding more segments before and after the already flagged

segments. Two annotators matched 2,373 claims from the initial 6,685 claims listed by

AosFatos, with the two annotators disagreeing only on 18 cases, which were discussed

and removed from the dataset, resulting in 2,355 total segments with a 99.24% agreement

rate between annotators. Afterward, for each matched claim, we concatenate the segments

composing that claim into one and consider that concatenation as a positive example in

further steps. The reason for merging these segments is to ensure that the full context

of the claim is considered. In cases where a claim is spread across multiple segments,

each segment on its own might not contain enough information to determine if it is

misinformative. Note that these claims come from a subset of the initial set of downloaded

videos: 430 videos out of the initial 525 and 108 out of the initial 121 transcriptions from

Escriba, totaling 538 unique sources.

Finally, since our goal is to model our problem as a segment classification task,

we need segments that do not share false claims (i.e., negative examples). To do this, we

treat all segments that are not matched or annotated as negative examples (i.e., segments

that do not share false claims). Using this approach, we end up with 336,855 segments

that we treat as negative examples.

7https://github.com/doccano/doccano
8An example of Doccano’s interface is available in Appendix B

https://github.com/doccano/doccano
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3.3 EI22 dataset

We also release a second expert-annotated dataset gathered by AosFatos. AosFatos

fact-checked a set of videos posted on YouTube and privately shared them with us. The

dataset comprises 78 fact-checked videos of electoral fraud claims made by voters during

the 2022 Brazilian presidential election. We refer to this dataset as Election Integrity

22, shortened to EI22. In total, EI22 has 77 videos and 1997 segments, of which 78

are misinformative claims. The 77 videos are of varying lengths, come from voters’ own

recordings, and are entirely separate from the videos on the BOL4Y dataset.

3.3.1 Building EI22

AosFatos provided us with a list of videos that comprise EI22, which contained

the links to the videos and timestamps of the misinformative claims. We again employed

Whisper, which transcribed the audio into segments. We then selected the segments that

comprised the timestamps of the claims, relying on the expertly annotated timestamps.

3.4 Classification

To investigate the feasibility of automatically detecting false segments in video

transcripts, we employ two models pre-trained with Brazilian Portuguese as bases for

our classifiers: BERTimbau and PTT5. We use BERTimbau, which we already use for

extracting segment embeddings, and PTT5 [13], which was also pre-trained on the BrWac

collection and is based on the T5 architecture [85]. For each of these models, we use a

classification head with a softmax activation that provides us with a probability of the

segment sharing false claims or not for each segment. Note that for the classification,

we elected to use PTT5 in addition to BERTimbau to compare how the selection of the

underlying Transformer architecture (i.e., encoder-only vs. encoder-decoder) affects the

classification performance.
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3.5 Experimental Setup

Here, we provide more details on our experimental setup, including information

about the dataset preparation, training and evaluation, and temporal and cross-dataset

experiments.

3.5.1 Dataset Preparation.

Our BOL4Y dataset is highly imbalanced: 2,355 positive instances (i.e., segments

sharing false claims) and 336,885 negative instances (i.e., segments that do not share false

claims). This substantial class imbalance impacts classification performance. Hence, we

evaluate classification performance using various configurations by randomly undersam-

pling9 the negative examples in the training dataset. In particular, we use the following

ratios: 1-to-1 (i.e., balanced training set across classes), 1-to-10, 1-to-25, 1-to-50, 1-to-75,

1-to-100, and the full dataset (2.3K positive and 336K negative examples). It is relevant

to mention that undersampling is applied only to the training set, with both validation

and test sets being kept intact.

3.5.2 Dataset Variations.

AosFatos published the list of claims on their website. However, they may present

editing by their journalists to correct grammatical errors or, in some cases, to add some

context within brackets. There are also additional challenges in working with transcrip-

tions, such as noisy audio, poor transcription, and imperfect speech. Considering the

issues mentioned, the edited version of the claim might differ from what we find in the

transcripts.

Therefore, we have created an alternative version of the dataset in which we have

replaced the false claims found in the transcripts with the version released by the jour-

9In addition to random undersampling, other techniques are available to undersample a dataset. We
choose the random alternative due to being a simpler and easily reproducible alternative. Other options
are available in the imbalanced-learn package: https://imbalanced-learn.org/stable/under_samp

ling.html

https://imbalanced-learn.org/stable/under_sampling.html
https://imbalanced-learn.org/stable/under_sampling.html
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nalist. Hence, we will refer to the variation of the dataset with the claims written by the

journalist as the “Edited” version and the version with claims extracted from transcrip-

tions as the “Original” version. For reference, we provide an example of what a claim

looks like in the original and edited datasets in Table 3.1: note that the version from the

edited dataset has context added in brackets. Given the polished nature of the edited

dataset, we aim to provide insights into the challenges of working with transcriptions

for misinformation span detection and how ill-formated claims might be detrimental to

performance. We aim to assess how the quality of the transcripts affects the classification

performance when considering the misinformation span detection task.

Table 3.1: Example of claim in the original and edited datasets

Dataset
Variation

Bolsonaro’s Claim

Original “He built three hydroelectric power plants abroad”

Edited
“He [Lula, Brazil’s former president]

built three hydroelectric power plants abroad”

3.5.3 Training and Evaluation.

We use the HuggingFace implementations of the BERTimbau10 and PTT511 mod-

els, which we fine-tune for our dataset variations using a Nvidia T4 GPU. The Hugging-

Face implementations contain a classification head that produces the output prediction

from the generated embeddings of the model. We perform classification with 5-fold cross-

validation. For each fold, we divide the dataset into five equal portions; three are used

for training, one for validation, and one for testing. The validation set is used in an

early-stopping approach, as we use the model from the epoch that best performed in the

validation set. We train the models for three epochs and use default parameters from their

implementation. Then, we assess the performance of classifiers and the impact of training

set sizes on evaluation results. The undersampled variations also give us an insight into

how classifiers can be implemented and used in the wild, as a bigger dataset also impli-

cates using more resources to train models. We follow the above procedure considering

different undersampling ratios over the original and edited datasets.

10https://huggingface.co/neuralmind/bert-base-portuguese-cased
11https://huggingface.co/unicamp-dl/ptt5-base-portuguese-vocab

https://huggingface.co/neuralmind/bert-base-portuguese-cased
https://huggingface.co/unicamp-dl/ptt5-base-portuguese-vocab
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3.5.3.1 Metrics

We evaluate our experiments using Precision and Recall for class 1 (misinforma-

tion), Balanced Accuracy, and Macro-f1. We argue that these metrics comprehensively

overview our models’ performance across settings. Overall, we consider Macro-F1 our

main metric due to class imbalance.

We also argue that false negatives are more relevant than false positives in our

setup. The main goal of our methodology is to aid fact-checkers. Considering this, false

positives, that is, legitimate claims predicted as false, will be double-checked by journalists

with no added harm. However, false negatives will go unnoticed, as they will not be flagged

as false correctly, resulting in a potentially more problematic and harmful outcome.

3.5.4 Sliding Window Experiments.

We also conduct experiments in a temporal manner to evaluate the real-world fea-

sibility of detecting misinformation in future data. Specifically, we investigate whether

models trained on past months’ data can accurately predict subsequent months’ misinfor-

mation. We perform two settings: 1) fixed training and 2) expanding training windows.

In the first setting, the training and test sets span fixed periods (6 months for

training and one month for testing). We progressively move the testing window forward

by one month. In the second experiment, the test window remains fixed for one month, but

the training window expands with each iteration. During training, we use the most recent

month as validation data for both settings. We train each variation for three epochs

and select the model with the best performance on the validation set. The temporal

experiments aim to investigate: If we train models on data from a given period in months,

can we accurately predict misinformation in future months?

3.5.5 Cross-dataset performance.

We also perform a cross-dataset test, training models with BOL4Y, and testing on

EI22, striving to assess cross-domain performance. Recall that these datasets pertain to

different contexts: BOL4Y relates to false claims made by Bolsonaro while EI22 relates
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to electoral fraud claims made by voters. We argue that the context difference between

the datasets allows us to perform cross-domain experiments. We train models for three

epochs with BERTimbau and PTT5 using multiple undersampling ratios.

Apart from releasing additional data (i.e., the EI22 dataset) for the task, we aim

to provide insights into data representativeness of data and misinformative claims; we

also want to assess how models trained in one dataset perform when tested in another

dataset of claims made by different speakers, further discussed in Section 3.6.1, effectively

showcasing the feasibility of the task in a real-world scenario.

3.6 Results

We now go over the results of our proposed experiments

3.6.1 Classification Performance

3.6.1.1 Original Dataset

Table 3.2 shows the results for our classifiers regarding all considered variations of

our training dataset. Recall that, due to the considerable amount of data, we leverage

undersampling variations of our dataset as our training set while maintaining the same test

sets for all experiments. We consider six positive-to-negative example ratios (1-to-1, 1-to-

10, 1-to-25, 1-to-50, 1-to-75, and 1-to-100) along the full dataset when undersampling our

training set. We implement a 5-fold cross-validation approach and report average values

on a video level, i.e., we compute metrics for every video in every fold and report average

value for five folds. We compare results with the Macro F1 score due to class imbalance,

along with class-balanced accuracy, and precision and recall for Class 1 (misinformation).

The BERTimbau classifier trained on the full version of our dataset is outperformed

by all undersampled versions. The same happens for the PTT5 classifier trained on the full

dataset. These results motivate us to exclude the full version of the dataset from further

experiments due to its poor performance and high training time. The BERTimbau-based

classifiers match or outperform the PTT5 ones when comparing the same training sets
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Table 3.2: Classification results for our dataset

BERTimbau
(Full)

BERTimbau
(1-to-1)

BERTimbau
(1-to-10)

BERTimbau
(1-to-25)

BERTimbau
(1-to-50)

BERTimbau
(1-to-75)

BERTimbau
(1-to-100)

Balanced Accuracy 0.55 0.82 0.78 0.75 0.68 0.69 0.62
Macro F1 0.56 0.49 0.63 0.67 0.66 0.68 0.63
Precision (Class 1) 0.21 0.09 0.24 0.35 0.38 0.43 0.35
Recall (Class 1) 1.00 0.75 0.94 0.97 0.99 0.99 1.00

PTT5
(Full)

PTT5
(1-to-1)

PTT5
(1-to-10)

PTT5
(1-to-25)

PTT5
(1-to-50)

PTT5
(1-to-75)

PTT5
(1-to-100)

Balanced Accuracy 0.54 0.81 0.76 0.70 0.64 0.60 0.58
Macro F1 0.54 0.49 0.61 0.64 0.62 0.60 0.58
Precision (Class 1) 0.15 0.08 0.20 0.30 0.29 0.28 0.27
Recall (Class 1) 1.00 0.76 0.94 0.97 0.99 0.99 1.00

regarding Macro F1. The BERTimbau-based classifier trained on the smallest training

set (1-to-1 ratio) yields the best-balanced accuracy value, achieving a 0.82 score, although

with poorer recall, precision, and Macro F1. Regarding Macro F1, BERT (1-to-75) yields

the best performance overall, with a Macro F1 score of 0.68. We see a positive impact

on performance when varying the undersampling ratio, with better results than training

models with the full dataset. This shows that training models in a full dataset setting can

be counterproductive in addition to being more costly. Overall, these results highlight

that misinformation span detection is challenging, with modern classifiers based on state-

of-the-art language models achieving an F1 score of up to 0.68.

3.6.1.2 Edited Dataset

We also propose an analysis of classification using an alternative version of our

dataset where we consider the claims as edited by the journalist. To provide context, we

initially performed a sentence-matching task to locate fact-checked claims within video

transcriptions. To better understand the challenges of using transcriptions as input for

classification, we have created an alternative version of the dataset. In this version, we

replaced the transcribed claims (which served as positive examples) with the original

claims as presented by AosFatos’ journalists. These original claims are more refined and

polished in comparison.

Comparatively, we see that unpolished claims (i.e., the original dataset) degrade

performance, which might be attributed to the noisy nature of transcriptions as they, for

example, can replicate speech imperfections from the original audio. We see an increase in

performance when using the edited version of the dataset (See Table 3.3) when comparing

models trained in datasets with different undersampling ratios, which showcases the diffi-

culty of working with transcriptions. Particularly for PTT5, the best-performing version

is now the 1-to-75 undersampled version instead of 1-to-25, as shown in Table 3.2. Over-

all, we find that the Edited dataset shows how ill-formatted claims can be detrimental to
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performance.

Table 3.3: Classification results for the Edited version of our dataset.

BERTimbau
(1-to-1)

BERTimbau
(1-to-10)

BERTimbau
(1-to-25)

BERTimbau
(1-to-50)

BERTimbau
(1-to-75)

BERTimbau
(1-to-100)

Balanced Accuracy 0.91 0.92 0.88 0.85 0.85 0.81
Macro F1 0.60 0.73 0.78 0.81 0.81 0.81
Precision (Class 1) 0.21 0.39 0.52 0.62 0.65 0.68
Recall (Class 1) 0.87 0.97 0.98 0.99 0.99 1.00

PTT5
(1-to-1)

PTT5
(1-to-10)

PTT5
(1-to-25)

PTT5
(1-to-50)

PTT5
(1-to-75)

PTT5
(1-to-100)

Balanced Accuracy 0.90 0.90 0.88 0.81 0.80 0.77
Macro F1 0.58 0.71 0.75 0.76 0.79 0.76
Precision (Class 1) 0.19 0.37 0.46 0.54 0.63 0.60
Recall (Class 1) 0.85 0.97 0.98 0.99 1.00 0.99

3.6.2 Temporal Analyses

We also conduct experiments where we partition the dataset by organizing the

claims according to the specific months when Bolsonaro made them. We aim to gain

insights into the practicality of deploying misinformation detection models in real-world

scenarios where future data is inaccessible. This experiment will help us evaluate the

robustness of our models in predicting and detecting future misinformation, focusing on

the task of misinformation span detection.

We base our temporal analysis on the best-performing models in Table 3.2 re-

garding Macro F1 scores, namely BERT-75 and T5-25. Then, we propose two separate

temporal studies for each: 1) a fixed training span of six months, hereafter referenced

as Walk-Forward and 2) an increasing training span, hereafter referenced as Expand,

starting with six months.

Figure 3.2 shows the distribution of Bolsonaro’s false claims over time and impor-

tant milestones of his presidency. Notably, false claims increased during the COVID-19

pandemic, starting to lower after the first quarter of 2022 and swiftly growing nearer to

the presidential elections, when Bolsonaro faced his biggest political opponent, Brazil’s

then-former president, Lula.

We train all models for three epochs and, considering the last month of the training

set as a validation set, choose the best version using early stopping. Note that due to

the lack of claims in June 2019 (see Figure 3.2), we could not use it as a validation or

test set, yielding null scores for June 2019 (test) and July 2019 (validation). In both

settings (”Walk Forward” and ”Expand”), we test models on the month chronologically

after the month of the validation set. We consider the unedited dataset and report Macro

F1 scores monthly in Figure 3.3. Results show values ranging from 0.5 to 0.8, with the
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Figure 3.2: Monthly sum of misinformation claims. Vertical lines signal important events
during Bolsonaro’s administration.

overall highest score on April 2021 (BERTimbau - Expand), the month after the start of

Covid relief payments. For all settings, we observe a decrease in Macro F1 scores during

the second semester of 2022, even for the ”Expand” approaches, which are trained on all

previous months. Overall, we also note that PTT5 yields more consistent performance

across settings, generating similar results for ”Walk Forward” and ”Expand” in contrast

to BERTimbau.

20
19

-7
20

19
-8

20
19

-9
20

19
-1

0
20

19
-1

1
20

19
-1

2
20

20
-1

20
20

-2
20

20
-3

20
20

-4
20

20
-5

20
20

-6
20

20
-7

20
20

-8
20

20
-9

20
20

-1
0

20
20

-1
1

20
20

-1
2

20
21

-1
20

21
-2

20
21

-3
20

21
-4

20
21

-5
20

21
-6

20
21

-7
20

21
-8

20
21

-9
20

21
-1

0
20

21
-1

1
20

21
-1

2
20

22
-1

20
22

-2
20

22
-3

20
22

-4
20

22
-5

20
22

-6
20

22
-7

20
22

-8
20

22
-9

20
22

-1
0

0.0

0.5

1.0

M
ac

ro
 F

1 
Sc

or
es

Walk Forward
Expand

(a) BERTimbau 75 - 6 Month Training Period
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Figure 3.3: Temporal analysis of the performance of our classifiers.

3.6.2.1 Cross-dataset performance

Table 3.4 shows the cross dataset experiment results. We trained models with

BOL4Y and tested on EI22. We varied the undersampling ratio, achieving the best result

(Macro F1 score of 0.72) with the 1-to-10 ratio for both models. Our results point to
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cross-dataset effectiveness, which is crucial in dealing with misinformation in a realistic

setting.

Table 3.4: Macro F1 scores for cross-dataset performance

1-to-1 1-to-10 1-to-25 1-to-50 1-to-75 1-to-100
BERTimbau 0.64 0.71 0.62 0.62 0.58 0.61
PTT5 0.64 0.71 0.63 0.57 0.59 0.56

3.6.3 Factors Affecting Performance (BOL4Y)

Here, we conduct additional analyses to understand how the classification perfor-

mance is affected by various factors over the BOL4Y dataset, including the source of the

transcription, the quality of the transcription, and the topic of the false claim. We choose

to perform these analyses on the BOL4Y as it is a much larger dataset with claims from

multiple topics, in contrast to EI22.

3.6.3.1 Noise Scores

As mentioned previously, there are multiple sources of confusing factors when

dealing with transcriptions: noisy audio, poor transcription, and imperfect speech. First,

we wanted to quantify the impact of noise on classification performance, so we calculated

the Spectral Flatness score [32] for all of our videos’ audio. Spectral flatness (or tonality

coefficient) measures how much a sound resembles white noise, as opposed to a pure

tone. A high spectral flatness (equal to 1.0) indicates that the sound has a flat spectrum,

similar to white noise. The score distribution is shown in Figure 3.4, highlighting that

most videos have clear audio, except for a few outliers.

Nevertheless, we assess correlation between metrics and spectral flatness. Table

3.5 shows the Pearson correlation between spectral flatness and Macro F1 scores for the

BERT-75 variation. We find no relevant correlation between Macro F1 and Spectral

Flatness values, possibly due to the nature of the videos: many come from interviews and

live streams, mostly recorded in quiet environments.
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Figure 3.4: Spectral Flatness Scores.

Table 3.5: Correlation between performance and noise.

Spectral Flatness Correlation

Balanced Accuracy -0.045
Macro F1 -0.046
Precision (Class 1) -0.054
Recall (Class 1) -0.01

3.6.3.2 Transcription Source

Recall that the transcriptions in our dataset come from 1) videos we downloaded

and transcribed using Whisper and 2) transcriptions provided directly by AosFatos using

their automated, proprietary transcription tool, “Escriba”. To assess the possible im-

pacts of transcription sources, we present the distribution of scores divided by sources:

Figure 3.5 shows distributions of Macro F1 scores for both. There’s a clear difference

between Whisper and Escriba transcriptions, validated through a statistical test of means

(Mann-Whitney U, p < 0.0001), which motivates us to understand possible causes with

an additional analysis regarding editing distance between original (i.e., as written by

AosFatos’ journalists) and transcribed claims.

0.0 0.2 0.4 0.6 0.8 1.0
Macro F1 Scores

Whisper

Escriba

Figure 3.5: Macro F1 score distribution by transcription source.
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3.6.3.3 Editing Distance

Here, we investigate how the classification performance changes based on the differ-

ence between the segment containing a claim and the fact-checked claim from AosFatos.

To do this, first, we calculate the editing distance between the original claim (i.e., as

written by AosFatos’ journalists) and the claim within the transcription. Then, for each

video, we compute the average editing distance between all claims in said video. Finally,

we calculate the correlation between the Macro F1 score and the average editing distance

for all sources, finding a weak Pearson correlation (−0.37) between the two variables.

This result points to an impact of the properties of transcribed text in classification per-

formance. We hypothesize that this may be due to added context provided by journalists

in some claims through information in brackets, as exemplified in Section 3.5.2.

3.6.3.4 Themes

Finally, we provide insights into theme-wise performance: a single video often

contains multiple claims, and these claims can cover a range of themes that AosFatos’

journalists annotate. To start, we compute the frequency of these themes within our

dataset and order them from most to least frequent. Figure 3.6 illustrates how the Macro

F1 scores are distributed among the top 7 most prevalent themes, each occurring at least

100 times in our dataset. We notice that the performance is generally consistent across

different themes, except for claims related to Congress and the Judicial System, which

exhibit poorer performance. For each theme, we add the number of times they occur in

parenthesis on the x-axis of Figure 3.6, and although “Judicial System” and “Congress”

have distributions skewed to lower Macro F1 values, they have similar frequencies to

“Environment” and “Elections”. These results point to the possible effects of different

themes in misinformation span detection in videos, and further analyses are left for future

work.
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Figure 3.6: Macro F1 score distribution for the seven most common themes in our dataset.
In parenthesis, the number of times that each theme occurs.

3.7 Employing LLMs

3.7.1 Fine-tuning

Our work on misinformation span detection, so far, showed the feasibility of the

task, which can be improved in future work, particularly using larger language mod-

els, such as LLaMa [99, 100] or ChatGPT [1]. Specifically, LLMs leverage architectural

advancements that yield high-quality, contextually relevant responses without extensive

fine-tuning, contrasting with smaller models such as BERT or T5.

Initially, we tested a fine-tuned classifier built with the 13B12 variation of LLaMa

2 and trained for three epochs, selecting the best-performing model using a validation set.

We used a LoRA [45] approach for fine-tuning for better efficiency, which only adjusts a

small percentage of weights (6% in our case). We set out to test classifiers with varying

undersampling ratios, as we did for BERTimbau and PTT5-based classifiers. We tested

a LLaMa-based classifier trained using an undersampled version of BOL4Y with 1-to-1,

1-to-10, and 1-to-100 ratios, with results shown in Table 3.6. For comparison purposes,

we also reiterate 1) the results for the best-performing versions of BERTimbau (1-to-

75) and PTT5 (1-to-25) and 2) respective models trained with a 1-to-1 ratio version of

BOL4Y. However, our LLaMa-based classifiers cannot outperform the much less costly

1213 billion parameters
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BERT and T5-based approaches. In summary, the tradeoff between computational cost

and performance was not worthwhile in our experiments, so we turned to alternatives

that leverage LLMs in potentially more efficient ways via in-context learning.

Table 3.6: Results for LLaMa classifier. We also recall the best models for BERTimbau
and PTT5 for comparison purposes

BERTimbau
(1-to-75)

PTT5
(1-to-25)

BERTimbau
(1-to-1)

PTT5
(1-to-1)

LLaMa 2
(1-to-1)

LLaMa 2
(1-to-10)

LLaMa 2
(1-to-100)

Balanced Accuracy 0.69 0.70 0.82 0.81 0.77 0.75 0.49
Macro F1 0.68 0.64 0.49 0.49 0.45 0.63 0.32
Precision (Class 1) 0.43 0.30 0.09 0.08 0.08 0.24 0.02
Recall (Class 1) 0.99 0.97 0.75 0.76 0.69 0.96 0.61

3.7.2 In-context Learning

Another way to leverage LLMs’ extended capabilities is through in-context learning

(ICL) [11], that is, learning from a few examples in the context of the prompt. Dong et al.

[31] distinguish between supervised learning and in-context learning: ”Different from su-

pervised learning requiring a training stage that uses backward gradients to update model

parameters, ICL does not conduct parameter updates and directly performs predictions

on the pretrained language models. The model is expected to learn the pattern hidden in

the demonstration and accordingly make the right prediction.”. Figure 3.7 illustrates an

example of misinformation classification via in-context learning.

In this section, we show a proof-of-concept classification experiment using in-

context learning. The goal is to leverage the capabilities of large language models, namely

LLaMa 2, to perform detection through ICL.

Although ICL is more efficient than fine-tuning an LLM, it is still a costly approach.

So, for this experiment, we use a subset of the BOL4Y: We consider all 2,355 false claims

and select the same amount of non-misinformative claims, totaling 4710 segments for

classification.

As discussed in Chapter 2, the idea of using in-context learning is to remove the

costs of fine-tuning LLMs by providing demonstrations as part of the prompt, which can

be effective for many tasks, such as sentiment analysis. In our task, we provide segments

of videos as demonstrations followed by their label and then prompt the model with a new

segment for its label. We performed multiple rounds of prompt engineering and settled

on the prompt shown in Figure 3.8.

We also select the demonstrations used in our prompts, as shown in Figure 3.9.

Recall that each video has at least one theme, with many having two, as expertly an-



3.7. Employing LLMs 43

Input

Sentence: "Voting machines are trustworthy" Class: Reliable Information

Sentence: "Lula stole the election" Class: Misinformation

Sentence: "Voting machines are safer than paper ballots" Class: Reliable Information

Sentence: "Bolsonaro won the 2022 elections!" Class: Misinformation

...
Sentence: "Bolsonaro refused covid vaccines" Class:

K demonstration
examples

New query

Output

Large Language Model
With frozen parameters

Reliable
Information

Figure 3.7: Example of misinformation detection via in-context learning

notated by AosFatos’ journalists. Then, given a video segment we want to classify, we

retrieve the theme of the video that contains said segment. Afterward, we randomly se-

lect other videos of the same theme and extract both positive and negative examples as

demonstrations. If a video has more than one theme, we select half of the demonstrations

from videos of each theme. We then feed this prompt to the LLaMa model.

We experimented with two different LLaMa 2 variations, 13B and 70B, on an

A100 GPU with 80GBs. We utilized the 70B variation with 8-bit quantization and the

13B version with full precision. Our goal was to perform a comprehensive assessment

of our setup as we tested two model variations, one of which is one of the largest open-

weight models available. Moreover, we also wanted to compare performance across model

variations.

Recall that we consider two classes, misinformation and non-misinformation, which
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Figure 3.8: Example of one prompt used.

Negative
Example

Positive Example

Prompt Building Segment SamplingVideos of topic X

Sampled
segments

Segment of
new video of

topic X+
Video Video

VideoVideo

Negative
Example

Positive Example

Negative
Example

Positive Example

Negative
Example

Positive Example

Figure 3.9: Building our prompts. We select segments, both negative

we use when building the demonstrations in our prompts, as exemplified in Figure 3.9.

However, as LLMs are generative models, sometimes they do not adhere to using only

one of the two words and output unrelated words or gibberish. We aimed to quantify

our results using the same metrics used in Section 3.6.1. So, whenever our model outputs

unrelated words, we treat it like an error: we check the correct label for that instance

and attribute the opposite class as our prediction. For example, if our model outputs

gibberish, but the proper label is ”misinformation”, we consider our prediction ”non-

misinformation”. We do this to provide a clear evaluation setup that allows us to use

classic machine learning metrics.

We lowercase all outputs and remove all whitespaces and punctuation to normalize

the output tokens, focusing on standardizing the outputs, which will be useful when

grouping equivalent predictions further on. Table 3.7 shows the number of predictions

split by class across the two LLaMa variations. 70B has higher prompt adherence than
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13B 70B
Misinformation 3239 3333
Non-misinformation 475 1203
Other 996 174

Table 3.7: Predictions grouped by class for each model

13B; that is, most answers follow the command given, outputting one of the two correct

classes, an expected result given the difference in model size. Table 3.8 displays each

model’s top 40 most frequent outputs. We highlight that, besides more output variation,

the 13B model also shows a few terms in English instead of Portuguese, which does not

occur in the 70B variation, which we hypothesize is also due to different capabilities due

to model size.

A few terms that can be read as equivalents to our two classes are also present in

both models. We highlight ”falso” (line 4) and ”verdade” (line 5) for 13B and ”verdade”

(line 17) and ”verdadeiro” (line 18) for 70B. We choose not to compute performance

metrics considering these instances as they require a manual evaluation, which defeats

the purpose of our automated misinformation detection approach.



3.7. Employing LLMs 46

LLaMa 13B LLaMa 70B
Output # of occurrences Output # of occurrences

1 desinformação 3239 desinformação 3333
2 verdadeiro 475 verdadeiro 1203
3 não 307 não 27
4 falso 112 okay 6
5 verdade 78 bolsonaro 5
6 desinformado 76 imposśıvel 4
7 sim 38 agenda 3
8 based on the statements 33 exagero 3
9 incorrect 21 brasil 3
10 falsidade 16 falso 2
11 based on the information 13 caro 2
12 engano 12 respeito 2
13 ironia 8 impeachment 2
14 okay 7 ok 2
15 desinformados 7 desinformado 2
16 falsa 6 ironia 2
17 desastre 6 verdade 2
18 based on the text 6 verdadeira 2
19 sure here 5 paraguai 1
20 nenhum 5 para 1
21 zero 5 percepção 1
22 brasil 5 perguntar 1
23 falsário 4 polémico 1
24 nenhuma 4 parabéns 1
25 okay here are 4 poĺıtica 1
26 sure here are 4 participação 1
27 bolsonaro 3 a 1
28 liberdade 3 orientação 1
29 lula 3 oportunidade 1
30 transparência 3 opinião 1
31 heres the 3 okay i 1
32 desinformadas 3 obrigado 1
33 desconhecido 3 não não 1
34 com base nas inform 3 norte 1
35 errado 2 normalidade 1
36 opinião 2 negócios 1
37 engana 2 negou 1
38 com base nas res 2 okay aqui 1
39 false 2 projeto 1
40 here are the answers 2 poĺıticos 1

Table 3.8: Top 40 most frequent outputs segmented by model variation. Whitespace and
punctuations have been removed.

We then evaluate classification performance, shown in Table 3.9, using precision

and recall for class 1 (misinformation), balanced accuracy, and macro-f1. As expected,

the 70B model performs better than the 13B version, with both higher precision and recall
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for class 1, resulting in a higher macro-F1. However, we observed poor performance that

did not compare with the best BERT or T5-based models shown in Table 3.2.

13B 70B
Balanced Accuracy 0.37 0.51
Macro F1 0.31 0.48
Precision (Class 1) 0.42 0.51
Recall (Class 1) 0.08 0.27

Table 3.9: Results for proof-of-concept experiment with ICL

3.8 Limitations

Next, we discuss some limitations of our methodology on misinformation span

detection. First, although we use Whisper, a high-quality transcription model, audio

transcriptions can still be noisy data, and transcription models depend heavily on the

audio quality to yield good results. Additionally, Whisper does the segmentation process

automatically and on a sentence level. Currently, word-level segmentation is not sup-

ported in Whisper [68]. Some transcriptions come from Escriba, AosFatos’ proprietary

transcription service that does not disclose details on implementation.

Additionally, although hard annotation was done by professional fact-checkers

(journalists), and the task in our study was very straightforward (check the similarity

of two segments), segment matching has a subjective component which can be a limita-

tion.

Finally, our data is focused only on the Brazilian context, which is restricted to

the Portuguese language. Representativeness is an important but challenging issue in

any empirical study such as ours. We argue that the Brazilian context is relevant to

the field of misinformation, and our data covers a wide range of themes highly exploited

by misinformation campaigns over four years [98, 83]. For instance, our data includes

Bolsonaro’s livestreams, which are organized periodically and used to construct narratives

along different topics that would favor the former Brazilian president.
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3.9 Discussion

The work presented in this chapter aimed to define the task of misinformation span

detection, showcase initial efforts in solving the task, and evidence additional factors that

might affect performance.

We proposed two novel datasets for the task (i.e., BOL4Y and EI22) and aimed to

assess multiple classification setups. The great imbalance between classes (i.e., misinfor-

mation and non-misinformation) in the BOL4Y dataset prompted us to test undersampled

versions of it, that is, undersampling the majority class (i.e., non-misinformation) in the

multiple classification setups. We employed two language models fine-tuned for Brazilian

Portuguese in our tests, BERTimbau and PTT5, over multiple undersampling ratios. We

found that different models have distinct undersampling ratios that work best, pointing to

the optimal parameters being model-specific, with our best model reaching a 0.68 Macro

F1 score.

We also performed tests with the Edited dataset to understand if added context

and less noisy data could foster more effective classification. We found this to be the case,

as unpolished claims degrade performance, with much better performance in the edited

dataset for both models. Furthermore, we proposed temporal experiments that aimed to

assess the robustness of these models over time in two distinct setups, finding that both

models yield fair results, which can be useful in a real-world setting. We also performed a

cross-dataset experiment by training models on BOL4Y and testing on the EI22 dataset,

achieving a Macro F1 of 0.71, pointing to cross-dataset robustness. Moreover, we aimed

to identify additional factors affecting performance, discovering variations based on the

transcription method, the claim’s theme, and the level of text editing, which can guide

future efforts in misinformation span detection.

Finally, we performed proof-of-concept tests with LLaMa 2, classifying a subset

of the BOL4Y dataset via 1) fine-tuning and 2) in-context learning. We found that the

fine-tuning approach is not justifiable, as it does not point to a significant increase in

performance and demands much higher computational costs than training a BERT or

T5-based classifier. Additionally, our ICL strategy, albeit much less costly than its fine-

tuning counterpart, does not yield good results, with low macro-F1 and accuracy. We

experimented with two LLaMa variations, including the largest available when writing

this thesis, and found the performance of both models to be subpar. We hypothesize that

this might be due to these pre-trained models’ intrinsic limitations, in addition to the

nature of our data and task.
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3.10 Future Work

In future work, we want to incorporate more features in the classification pipeline,

such as metrics related to abusive language, such as toxicity, profanity, and inflammatory

scores; this can be achieved with tools such as Perspective API,13 which we believe can

provide valuable data for improved classification approaches. We are also convinced that

explicability frameworks, such as SHAP [52] or LIME [84], can help us probe into our

classifiers, evidencing their inner workings and exploring error cases.

Additionally, we also want to experiment with additional features extracted from

the video itself, such as facial expressions, as we believe that these can add valuable

information to our classifiers. To achieve this, we can leverage vision LLMs, such as

LLaMa 3.2.14 Finally, since LLMs usually have a data cutoff of several months before

their release, additional rounds of fine-tuning can help add new knowledge to these models,

potentially improving performance.

13https://perspectiveapi.com/
14https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/

https://perspectiveapi.com/
https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/
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Chapter 4

Conclusion

Online misinformation is a rampant, multi-faceted issue that affects online environments,

taking on various forms, such as memes, images, and content disseminated through social

networks, dedicated communities, and messaging apps like WhatsApp and Telegram. It

spreads through various mediums, encompassing audio, text, images, and video content.

Given the relevance and ubiquity of the problem, we aimed to propose mitigation solutions

for misinformative content.

In this work, we presented the first effort to explore the problem of misinformation

span detection in videos, focusing on videos flagged as misinformative by expert fact-

checkers. We presented the first effort to explore the problem of misinformation span

detection in videos. In addition to determining whether a video contains misinformation,

we also identify the specific part (span) of the video where it occurs. We investigated

multiple setups to assess the challenges related to effective misinformation span detec-

tion. We achieved promising results, with our best model yielding an F1 score of 0.68,

indicating the feasibility of the task. Furthermore, we built the first two datasets for mis-

information span detection and made them available to the scientific community as one

of the contributions of our work; our datasets provide completely novel data for a new,

unexplored task. We also assessed cross-dataset performance, achieving an F1 score of

0.71 when training with the BOL4Y dataset and testing it on the EI22 dataset with both

BERTimbau and PTT5; this points to effective detection despite misinformative claims

coming from different sources. Furthermore, we perform proof-of-concept experiments

with LLaMa 2, a large language model, with both fine-tuning and ICL.

Finally, others can replicate the pipeline proposed in this paper to build new

datasets for different contexts, further improving automatic misinformation detection.

We hope our methodology for misinformation span detection can be used to develop

other applications to assist fact-checkers and reduce the time spent on misinformation

detection in videos by pinpointing potential fact-checking points. Also, we argue that

identifying the spans of misinformation within videos can assist social media operators in

providing additional context to viewers when a false claim occurs. For instance, they can

include warning labels with additional context regarding a false claim as an overlay on a

video when a false claim is made.
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Finally, our work comes at a critical time for digital platforms. Initiatives like

the Digital Services Act (DSA) regulation have emerged as significant steps forward in

regulating digital spaces, aiming to ensure safer and more responsible online environments

through effective content moderation. Such initiatives highlight the need for more robust

automatic moderation tools, and we hope our work can improve these efforts.
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Appendix A

Statistics on Videos and Comments

From the BOL4Y Dataset

Considering the BOL4Y dataset, we initially downloaded 525 videos, from which 460

have comments from users available. Recall that we could only match claims from 430

videos, as described in Section 3.2.1.3. However, all videos we downloaded were flagged as

containing misinformation, so we chose to show statistics related to the 460 videos with

user comments, which all come from YouTube. In total, we gathered 1,738,946 comments.

A.1 Videos

Figure A.1 shows the distribution of videos regarding upload date across the four

years of Bolsonaro’s presidency, with 2021 being the year with the most videos.
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Figure A.1: Distribution of videos over the years.

Then, Table A.1 displays channels that posted the videos, namely the top 10 with

the most videos uploaded. We highlight that the channel that uploaded the most videos

was Bolsonaro’s official YouTube channel, with other two Bolsonaro-affiliated channels in
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the top 10: Bolsonaro TV, and Carlos Bolsonaro, with the latter being one of Bolsonaro’s

son’s channel. Additionally, from the 460 videos, 174 were live streams, which was one of

the ways Bolsonaro used to communicate with his voter base.

Table A.1: Top 10 channels with the most videos in respect to the total 460

Channel Video Count
Jair Bolsonaro 196
Foco do Brasil 108
Bolsonaro TV 29

CanalGov 15
Poder360 12

Carlos Bolsonaro 6
SBT News 6
CNN Brasil 6

Band Jornalismo 5
Os Pingos nos Is 5

Moreover, Table A.2 displays the categories YouTube attributed to each video.

Expectedly, the vast majority of videos pertain to the News & Politics category.

Table A.2: Video count by category

Video Category Count
News & Politics 409
Entertainment 28
People&Blogs 4
Travel&Events 2

Education 7
Science&Technology 1

Gaming 6
Film&Animation 2

Sports 1

We then move to general statistics regarding the videos. As evidenced by Figure

A.2, the views distribution is heavy-tailed, with most videos having less than 2.5M views.

A similar pattern appears in Figure A.3, with a heavy-tailed distribution and most videos

receiving under 250,000 likes. Overall, we see that the videos we gathered have high

engagment, with many views and likes.
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Figure A.2: Views per video. X-axis values should be multiplied by 1e7
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Figure A.3: Likes per video. X-axis values should be multiplied by 1e6

Furthermore, we provide insight into the length of videos (in seconds) in Figure

A.4. Most videos lie before the 5000 second mark (approximately 83 minutes), evidencing

that these videos are usually long in duration
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Figure A.4: Video length

Finally, Figure A.5 shows the distribution of comments per video, reinforcing the

high engagement they have.
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Figure A.5: Distribution of comments per video. 100 bins. Y-axis in log scale

We now turn to taking a deeper look into the comments’ content in Section A.2
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A.2 Comments

Figure A.6 shows the distribution of comments in regard to their word count, with

most ranging from 1 to 1000 words.
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Figure A.6: Comment word count

Furthermore, we once again employed Perspective API to the 1,738,946 comments

and display the distribution for six attributes: Toxicity, Severe Toxicity, Identitiy Attack,

Insult, Profanity, and Threat. We show results in Figure A.7 and highlight that 25%

of comments present scores equal to or higher than 0.6 for toxicity, identity attack, and

insult, pointing to significant hostility in the comments.
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Figure A.7: Distribution of Perspective Attributes

Finally, we analyze the top 20 most used emojis, displayed in Figure A.8.1. The

most used emoji used is the Brazilian flag, followed by emojis of endorsement. We also

highlight emojis that might be used by anti-Bolsonaro commenters, such as the bull/cow

related emojis, often used to antagonize Bolsonaro’s voters.

Figure A.8: Top 20 most used emojis

1We choose to display the emojis table as a figure due to LaTeX’s poor emoji support
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Appendix B

Doccano

Figure B.1 shows an example of Doccano’s interface during the segment matching task.

We present the claim and the candidate segments related to it, and the user must flag

which segments (if any) comprise said claim.

Figure B.1: Example of Doccano’s interface
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